
Computing Light Transport Gradients using the Adjoint Method

Jos Stam, Graphics Researcher, NVIDIA.

03/10/2019 - present

Abstract

This paper proposes a new equation from continuous adjoint theory to compute the gradient of

quantities governed by the Transport Theory of light. Unlike discrete gradients ala autograd1, which

work at the code level, we first formulate the continuous theory and then discretize it. The key insight of

this paper is that computing gradients in Transport Theory is akin to computing the importance, a

quantity adjoint to radiance that satisfies an adjoint equation. Importance tells us where to look for light

that matters. This is one of the key insights of this paper. In fact, this mathematical journey started from

a whimsical thought that these adjoints might be related. Computing gradients is therefore no more

complicated than computing the importance field. This insight and the following paper hopefully will

shed some light on this complicated problem and ease the implementations of gradient computations in

existing path tracers.

1. Introduction

In this paper we present a general framework for computing gradients in the context of light

propagation. Gradients are of central importance in the fields of machine learning, computer vision and

computer graphics. Often, we need to invert a simulation like a rendering to recover hidden control

parameters. For smooth problems the gradient is a key instrument in methods such as gradient descent

or quasi-Newton iteration. This paper is concerned with computing the gradient of a solution to a

transport equation. In order to achieve this goal, we derive a continuous adjoint equation for the

gradient of the radiance. This equation is a generalization of the usual backpropagation algorithm

popular in deep learning. We show that the adjoint equation for the gradient is almost identical to the

adjoint equation for the importance in transport theory. The only difference is a different source term

that is equal to the initial gradient of the cost function with respect to the radiance field.

The method of computation is akin to a bi-directional Monte Carlo solution using radiance and

importance. First the transport equation is solved for the radiance forward from the light sources to the

receivers (camera/eye). Then the adjoint transport equation is solved backwards from the receiver for

the adjoint of the gradient of radiance similarly to the importance. As the propagation progresses

backwards, we update the gradients of the cost function with respect to the controls acting at that point

in the path. The reader familiar with backpropagation in deep learning will appreciate the analogy with

1 Autograd is just one of many packages out there that computes differentials at the code level. See
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html for more details and [2] for an excellent
introduction to Automatic Differentiation.

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

forward and backward propagation in neural networks. Keep this in mind when reading this paper. In

fact, the adjoint theory of optimization is the backbone of backpropagation.

We contrast our approach with a purely autograd style of computing the gradient. Indeed, one could

automatically translate the code of a renderer into its adjoint (or reverse) version and thus obtain the

gradient. This approach is known as D.T.O: Discretize Then Optimize. On the other hand, our approach

falls in the category of O.T.D: Optimize Then Discretize methods. We derive the adjoint equation in the

continuous setting and then discretize and reuse a standard implementation of a path tracer renderer.

This is because the adjoint equation is almost identical to the computation of importance. Of course, the

differentials appearing in the transport process that depend on the controls must be differentiated,

either analytically or using automatic differentiation.

This paper does not address the problem of smoothing non-continuous terms in the transport equation.

The problem of handling discontinuities is orthogonal to the approach taken in this paper. We think that

uncovering the mathematical structure in a smooth setting sheds another light on the problem and

might lead to simplifications, insights and better implementations. We assume in our derivations that

each function is differentiable. For non-differentiable terms some regularization or some weaker form of

differentiability could be used (distribution theory for example).

The rest of the paper is organized as follows. Section 2 provides the necessary theoretical background of

transport theory. Section 3 gives a brief overview of the continuous adjoint method in optimization.

Section 4 presents the derivation of the adjoint equation in Transport Theory setting for radiance and its

adjoint for the computation of the gradient of the cost function. Section 5 provides details of a simple

implementation while Section 6 discusses several applications. Finally, we conclude in Section 7 and

mention directions for future research.

But first as an appetizer we present some necessary results from functional analysis and fix notations.

1.1 Some Functional analysis

Let ℱ = ℱ(Ω, ℝ𝑛) be the Hilbert space of all functions mapping a continuous domain Ω to ℝ𝑛 equipped

with the following inner product:

〈𝑓, 𝑔〉 = ∫ 𝑓∗(𝑥)𝑔(𝑥)𝑑𝑥,
Ω

 where 𝑓, 𝑔 ∈ ℱ.

This induces a norm on the space: |𝑓| = √〈𝑓, 𝑓〉, we will also denote 〈𝑓〉 = 〈1, 𝑓〉 = ∫ 𝑓(𝑥)𝑑𝑥
Ω

, the

integral of 𝑓 over the entire domain Ω. An operator is simply a linear function 𝐀 ∶ ℱ → ℱ. The adjoint of

𝐀 is an operator denoted by 𝐀∗ that satisfies

〈𝐀𝑓, 𝑔〉 = 〈𝑓, 𝐀∗𝑔〉 for all 𝑓, 𝑔 ∈ ℱ.

An operator that satisfies 𝐀 = 𝐀∗ is called self adjoint. An important example is an operator defined by

a kernel 𝐾(𝑥, 𝑦) as follows:

𝐊𝑥 = 〈𝐾(𝑥,∙),∙〉 = ∫ 𝐾(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦
Ω

.

We have the identities: (𝐀 + 𝐁)∗ = 𝐀∗+𝐁∗ and (𝐀𝐁)∗ = 𝐁∗𝐀∗. Differentials of operators are to be

understood as a Fréchet Derivative. The operator 𝐀 is differentiable at 𝑓 if there exist an operator 𝐃

(the derivative of 𝐀 at 𝑓) such that

lim
|ℎ|→0

|𝐀(𝑓 + ℎ) − 𝐀(𝑓) − 𝐃ℎ|

|ℎ|
= 0.

For all sequences ℎ = {ℎ𝑛}𝑛=1
∞ with ℎ𝑛 → 0 as 𝑛 → ∞.

Fun fact: the Fréchet derivative of the Dirac delta operator: 𝛿 ∶ 𝐶∞(Ω) → ℝ ⊂ 𝐶∞(Ω) ∶ 𝜑 ⟼ 𝜑(0) is

𝛿′ ∶ 𝜑 ⟼ −𝜑′(0). In general 𝛿(𝑘) ∶ 𝜑 ⟼ (−1)𝑘𝜑(𝑘)(0). It’s just integration by parts via Riesz’

Theorem. Yeah, a Dirac delta is not a weird function but an operator also known as a distribution.

2. Light Transport and the Adjoint Formulation2

We assume that our environment is comprised of a set of surfaces denoted by S. The environment

between the surface is empty (no participating media) and light travels in straight lines between surface

points. The properties of light like radiance are constant along each ray with changes occurring only at

the surfaces. Consequently, the functions we will consider are defined over the space of rays spanned by

the surfaces:

2 This Section is inspired by Eric Veach’s excellent PhD thesis [5].

𝐿(𝑜)

𝐿(𝑖)

𝐧

𝑆
𝜗

𝜗′

Figure 1: Geometry at a surface point and the decomposition of the radiance into outgoing and incoming parts.

ℛ = {�̅� = 𝑥 → 𝑥′ with 𝑥, 𝑥′ ∈ 𝑆}.

This space is four-dimensional since each ray is defined by a the two-coordinates of its endpoints on

each surface. We distinguish one of these points as the origin of the ray. This is indicated by the arrow

notation: �̅� = 𝑥 → 𝑥′. Such that the ray with the opposite direction is denoted by (−�̅�) = 𝑥′ → 𝑥. The

fundamental quantity in light transport is the radiance field:

𝐿(�̅�) = 𝐿(𝑥 → 𝑥′)

which has physical units of radiant energy per area per solid angle: 𝑊 ∙ 𝑚−2 ∙ 𝑠𝑟−1. In the following it

will be convenient to distinguish between incoming radiances 𝐿(𝑖) and outgoing radiances 𝐿(𝑜) with

respect to the normal 𝐧 at a point on the surface. This is illustrated in Fig. 1. We have by convention

that:

𝐿(�̅�) = {
𝐿(𝑜)(�̅�) if cos 𝜗 > 0

𝐿(𝑖)(−�̅�) if cos 𝜗 < 0

Where 𝜃 is the angle between the ray and the surface normal. These two fields are related by a

propagator operator as follows:

(𝐏𝐿)(�̅�) = 𝐿(−�̅�)

It follows that we have 𝐿(𝑖) = 𝐏𝐿(𝑜) and 𝐿(𝑜) = 𝐏𝐿(𝑖). This operator is self-adjoint.

Light sources are modeled by an emitter field 𝐿0
(𝑜)

(�̅�), while the interaction at the surfaces is given by a

scattering kernel

𝐾(�̅�, �̅�) = 𝑓𝑠(𝑥 → 𝑥′, 𝑦 → 𝑦′)𝛿(𝑦 − 𝑥′)

Where 𝑓𝑠 is the bi-directional scattering function (BSDF) and 𝛿 is the Dirac-delta operator. The transport

equation relates the radiance along a ray to sources and scattered radiances:

𝐿(�̅�) = 𝐿0
(𝑜)(�̅�) + ∫ 𝐾(�̅�, �̅�)𝐿(�̅�

ℛ

)𝑑𝜇(�̅�) (1)

 Where the integration measure is defined by

𝑑𝜇(�̅�) = 𝑉(�̅�)
cos 𝜗 cos 𝜗′

|𝑦 − 𝑦′|2
𝑑𝑦𝑑𝑦′.

The visibility function 𝑉(�̅�) is equal to one when 𝑦 is visible from 𝑦′ along the ray �̅� = 𝑦 → 𝑦′ and zero

otherwise (possibly smoothed for the sake of differentiability). Furthermore 𝜗 and 𝜗′ are the angles

between the incoming and outgoing rays and the normal at the surface point 𝑦 = 𝑥′. Eq. 1 can be

written more compactly using a transport operator 𝐓(�̅�) = 〈𝐾(�̅�,∙),∙〉 for the scattering operation:

𝐿 = 𝐿0
(𝑜)

+ 𝐓𝐿. (2)

This is the transport equation for the radiance. Formally we can solve this equation using a Neumann3

series as follows:

𝐿 = 𝐒𝐿0
(𝑜)

= (𝐈 − 𝐓)−1𝐿0
(𝑜)

= (𝐈 + 𝐓 + 𝐓2 + 𝐓3 + ⋯)𝐿0
(𝑜)

. (3)

This series has a physical interpretation. The final radiance is equal to successive contributions involving

increasing orders of scatter events. Given the radiance function 𝐿 we can measure its value using a

receiver function 𝑊1
(𝑖)

(�̅�) as follows:

𝐼 = 𝐼(𝐿) = ∫ 𝑊1
(𝑖)

(�̅�)𝐿(𝑖)(�̅�
ℛ

)𝑑𝜇(�̅�) = 〈𝑊1
(𝑖)

, 𝐿(𝑖)〉. (4)

This is the quantity that we are essentially interested in computing. Using the propagator and the

scattering operators we can rewrite the measured radiance:

𝐼 = 〈𝑊1
(𝑖)

, 𝐿(𝑖)〉 = 〈𝑊1
(𝑖)

, 𝐏𝐒𝐿0
(𝑜)

〉 = 〈(𝐏𝐒)∗𝑊1
(𝑖)

, 𝐿0
(𝑜)

〉 = 〈𝐒∗𝐏𝑊1
(𝑖)

, 𝐿0
(𝑜)

〉 = 〈𝑊(𝑜), 𝐿0
(𝑜)

〉

The final radiance at a point can therefore be computed in two different ways. Either by propagating the

source emitter or by propagating the receiving detector. For the latter we need to compute the adjoint

of the scattering operator to obtain the importance field:

𝑊 = 𝐒∗𝑊1
(𝑜)

. (5)

From Eq. 3 it follows that:

𝐒∗ = 𝐈 + 𝐓∗ + 𝐓∗2 + 𝐓∗3 + ⋯ = (𝐈 − 𝐓∗)−1.

Where 𝐓∗ = 〈𝐾∗(�̅�,∙),∙〉 and 𝐾∗(�̅�, �̅�) = 𝐾(−�̅�, −�̅�). So that the importance field satisfies the adjoint

transport equation

𝑊 = 𝑊1
(𝑜)

+ 𝐓∗𝑊. (6)

To summarize: we have two alternative ways to compute the radiance 𝐼 at the receiver/emitter. The

first approach which we call the forward method is to solve for the radiance using the successive

scatterings of the emitter (Eq. 3) and then compute the final radiance from

𝐼 = 〈𝑊1
(𝑖)

, 𝐒𝐿0
(𝑖)〉 = 〈𝑊1

(𝑖)
, 𝐿1

(𝑖)〉.

In the forward mode we basically propagate radiance rays from the emitter to the receiver.

Alternatively, we can use a backward method which solves for the importance by scattering the receiver

(Eq. 5) and then compute the final radiance using

3 Not named after the famous John Von Neumann (Hungarian-American) but Carl Neumann (German). In high
school you probably learned that 1 + 𝑥 + 𝑥2 + ⋯ = 1 (1 − 𝑥)⁄ for |𝑥| < 1. Well it is also true for operators when
|𝐓| < 1. But in some sense 1 + 2 + 22 + ⋯ = −1 is fun nonsense.

𝐼 = 〈𝐒∗𝑊1
(𝑜)

, 𝐿0
(𝑜)

〉 = 〈𝑊0
(𝑜)

, 𝐿0
(𝑜)

〉.

The backward mode traces importance rays from the receiver to the emitter. Hybrid schemes are also

possible. Where one can start two sets of propagating rays, one starting from the emitter and the other

starting at the receiver connecting them somewhere in the middle. This technique is known as bi-

directional ray tracing in computer graphics.

This concludes our brief overview of light transport theory and the role of the adjoint transport operator

in connecting radiance and importance.

Figure 2: Radiance (forward) and Importance (backward) propagation.

3. The Continuous Adjoint Method in Optimization4

The goal of optimization is to find the minimum (maximum) of a cost function 𝒥(𝑢, 𝜃) depending on a

state 𝑢 and a control 𝜃. Both the state and the control are continuous functions depending on a variable

𝜔 ∈ Ω ⊂ ℝ𝑑. The state and the control are also constrained to satisfy an equation 𝐸(𝑢, 𝜃) = 0. For

example, in the case of Ordinary Differential Equations, the continuous variable is time and the state

must satisfy a differential equation: 𝐸(𝑢, 𝜃) = −�̇�(𝑡) + 𝑓(𝑢(𝑡), 𝜃(𝑡)). The fundamental problem of

continuous optimization (and machine learning) can be stated concisely as:

𝐅𝐢𝐧𝐝 𝜃∗ = argmin
𝜃

𝒥(𝑢, 𝜃) 𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 𝐸(𝑢, 𝜃) = 0, (7)

4 The continuous adjoint method was first introduced by Pontryagin and coworkers in [4]. The article by Giles and
Pierce is a very good introduction [1]. The adjoint method was first applied in computer graphics to control fluid-
like animations [3].

receiver: 𝑊1
(𝑖)

 emitter: 𝐿0
(𝑜)

surfaces: 𝑆

𝐓

𝐓2

𝐈

𝐓∗

𝐓∗2

radiance: 𝐿1
(𝑖)

= 𝐒𝐿0
(𝑜) importance: 𝑊0

(𝑜)
= 𝐒∗𝑊1

(𝑖)

where 𝑢(𝜔) ∈ ℝ𝑛, 𝜃(𝜔) ∈ ℝ𝑚 and 𝐸(𝑢, 𝜃) ∈ ℝ𝑘. We assume that the cost function is defined over the

entire domain:

𝒥(𝑢, 𝜃) = ∫ 𝐽(𝑢(𝜔), 𝜃(𝜔))𝑑𝜔 = 〈𝐽(𝑢, 𝜃)〉
Ω

.

However, in many applications the cost function is only defined at a finite set of points �̂�𝑠 ∈ Ω:

𝒥(𝑢, 𝜃) =
1

2
∑|𝑢(�̂�𝑠) − �̂�𝑠|2

𝑁

𝑠=1

Where the �̂�𝑠 ∈ ℝ𝑛 (𝑠 = 1, ⋯ , 𝑁) are the desired states. This is a common type of cost function for

least square optimization and supervised (deep) learning.

In a smooth setting where all functions are assumed to de differentiable optimization and learning

algorithms rely heavily on the gradient of the cost function. Consequently, a lot of research in these

fields is devoted to computing this gradient. In fact, it is the fundamental challenge. The research

described in this paper is no exception! For example, both gradient descent and quasi-Newton iterative

methods rely heavily on a gradient of the cost function.

More precisely, given a cost function we are interested in computing the gradient of the cost function

with respect to the controls:

𝛿𝒥 =
𝑑𝒥

𝑑𝜃
.

That is the holy grail we are after. Notice that the “𝛿” symbol is a short-hand for “𝑑 𝑑𝜃⁄ ” not the Dirac-

delta function: 𝛿𝑋 means a variation of 𝑋 with respect to the control 𝜃.

Constrained optimization problems like Eq. 7 can be transformed into unconstrained problems using the

machinery of Lagrange multipliers. In the continuous setting one introduces a Lagrange multiplier

function 𝑝(𝜔). We then augment the cost function with a penalty term involving the multiplier and the

constraint:

ℒ(𝑢, 𝑝, 𝜃) = 𝒥(𝑢, 𝜃) + ∫ 𝑝(𝜔)∗𝐸(𝑢(𝜔), 𝜃(𝜔))𝑑𝜔
Ω

= 〈𝐽(𝑢, 𝜃)〉 + 〈𝑝, 𝐸(𝑢, 𝜃)〉.

This is the less familiar continuous version of the Lagrangian. The necessary conditions for optimality are

(where the derivatives are Fréchet):

𝜕ℒ

𝜕𝑢
= 0

𝜕ℒ

𝜕𝑝
= 0 and

𝜕ℒ

𝜕𝜃
= 0.

From the first condition we get an adjoint equation for the multiplier (see Appendix A)

(
𝜕𝐸

𝜕𝑢
)

∗

𝑝 = −
𝜕𝐽

𝜕𝑢
. (8)

This equation is independent of the controls! This is the key reason why the adjoint method is so

popular in optimization and machine learning. The consequence is that computing the gradient is no

more costly then computing the function itself. The Lagrange multiplier is usually called the adjoint

function in the optimization literature. Intuitively, the adjoint function models the sensitivity of the cost

function with respect to the state independently of the controls. Once the adjoint function is computed

we obtain the gradient of the cost function with respect to the controls as follows (see Appendix A)

𝑑𝒥

𝑑𝜃
= 〈𝑝,

𝜕𝐸

𝜕𝜃
〉 + 〈

𝜕𝐽

𝜕𝜃
〉. (9)

Computing the gradient of the cost function therefore involves two steps. The solution of the adjoint

equation for 𝑝(𝜔) and the evaluation of the gradient. These equations are very general and can be

applied to most optimization and machine learning problems. Next, we apply this methodology to the

transport theory of light propagation.

4. Adjoint Method Applied to Transport Theory

We now combine the adjoint method with the transport equations. An example of a cost function in

rendering is

𝐽(𝐿, 𝜃) =
1

2
∑|𝐼𝑠(𝐿) − 𝐼𝑠|

2

𝑁𝑠

𝑠=1

+
1

2
𝜀|𝜃|2. (10)

Where the sum is over the receivers and the 𝐼𝑠 are some target values and 𝜀 ≥ 0 models the

smoothness of the control. In this case the gradient is:

𝑑𝐽

𝑑𝜃
= ∑(𝐼𝑠(𝐿) − 𝐼𝑠)

𝑑𝐼𝑠

𝑑𝜃

𝑁𝑠

𝑠=1

+ 𝜀𝜃.

Our method can of course handle more general cost functions. But it is helpful to hold this typical

example in your mind. Why? Because we are really after computing the gradient of the radiance with

respect to the controls. Let that sink in. From Eq. 4 we have that

𝑑𝐼𝑠

𝑑𝜃
= 〈

𝑑𝑊1
(𝑖)

𝑑𝜃
, 𝐿(𝑖)〉 + 〈𝑊1

(𝑖)
,
𝑑𝐿(𝑖)

𝑑𝜃
〉.

In general, we assume that the transport operator and the emitters depend on the control function

𝜃(𝜔). Consequently, our transport equation (Eq. 2) becomes:

𝐸(𝐿, 𝜃) = −𝐿 + 𝐓𝜃𝐿 + 𝐿0,𝜃
(𝑜)

= 0.

Where the subscript denotes dependence of a function/operator on the control 𝜃 not differentiation. Its

differential with respect to the radiance is:

𝜕𝐸

𝜕𝐿
= −𝐈 + 𝐓𝜃.

And an equation for the adjoint function 𝑝(𝜔) follows from Eq. 8:

−𝑝𝐈 + (𝐓𝜃)∗𝑝 = −
𝜕𝐽

𝜕𝐿
. (11)

This equation can be written using the Neumann series (Eq. 5)

𝑝0 = (𝐒𝜃)∗𝑝1. (12)

Equation 12 is the main result of this paper.

This equation is exactly the adjoint transport equation for the importance field with a different source

term:

𝑝1 =
𝜕𝐽

𝜕𝐿
. (13)

And we have for the particular cost function given by Eq. 10 that

𝑝1 = (𝐼𝑠(𝐿) − 𝐼𝑠)
𝜕𝐼𝑠(𝐿)

𝜕𝐿
.

Eq. 12 does not depend on the number of controls and is therefore as efficient to solve as the adjoint

transport equation for the importance. It also does not need the computation of derivatives with

respect to the controls. This is a direct consequence of the fact that the transport operator is linear with

respect to the radiance. The same operator is used for the equation of the adjoint function 𝑝(𝜔). While

solving the adjoint through propagation we compute the gradients of the cost function sequentially with

respect to the controls at each scatter/emitter from Eq. 9:

𝑑𝐽

𝑑𝜃
= 〈𝑝, (

𝜕𝐓𝜃

𝜕𝜃
) 𝐿 +

𝜕𝐿0,𝜃
(𝑜)

𝜕𝜃
〉 +

𝜕𝐽

𝜕𝜃
. (14)

Equation 14 is the second main result of this paper.

This step requires the derivatives of the transport operator and the emitter with respect to the controls.

These derivatives can be computed analytically or through automatic differentiation.

5. Implementation

5.1 Path Tracing

First, we introduce the standard notations used in computer graphics: each ray is defined by a position 𝑥

and a direction 𝜔. Let 𝑛 be the surface normal at this point. The outgoing radiance 𝐿(𝜔𝑜𝑢𝑡) due to an

incoming radiance 𝐿(𝜔𝑖𝑛) is given by a Bidirectional Reflectance Distribution Function (BRDF):

𝐿(𝜔𝑜𝑢𝑡) = 𝜌(𝑛, −𝜔𝑖𝑛, 𝜔𝑜𝑢𝑡)(𝑛 ∙ 𝜔𝑖𝑛)𝐿(𝜔𝑖𝑛).

Where 𝜌(𝑛, 𝜔𝑖𝑛, 𝜔𝑜𝑢𝑡) is the BRDF. The minus sign in front of the incoming direction 𝜔𝑖𝑛 is there

because the BDRF is usually defined with both vectors pointing outwards from the surface. However, in

path tracing the directions shown in Figure 4 are more natural. Similarly, the outgoing adjoint 𝑃(�̂�𝑜𝑢𝑡)

in direction �̂�𝑜𝑢𝑡 due to an incoming adjoint 𝑃(�̂�𝑖𝑛) from a direction �̂�𝑖𝑛 is related via the adjoint 𝜌∗ of

the BRDF:

𝑃(�̂�𝑜𝑢𝑡) = 𝜌∗(𝑛, −�̂�𝑖𝑛, �̂�𝑜𝑢𝑡)(𝑛 ∙ �̂�𝑖𝑛)𝑃(�̂�𝑖𝑛).

𝜔𝑘

Figure 3: Geometry of a path.

𝑥1

𝑥𝑘

𝑥𝑁−1

𝑥0 𝑥𝑁

𝑛𝑘

𝑛0
𝑛1 𝑛𝑁−1

𝑛𝑁

−𝜔𝑘−1

𝜔1 −𝜔0

𝜔0

−𝜔𝑁−2 𝜔𝑁−1

−𝜔𝑁−1

𝑛 𝐿(𝜔𝑜𝑢𝑡) 𝐿(𝜔𝑖𝑛)

𝜔𝑜𝑢𝑡 𝜔𝑖𝑛

𝑛 𝑃(�̂�𝑜𝑢𝑡) 𝑃(�̂�𝑖𝑛)

�̂�𝑜𝑢𝑡 �̂�𝑖𝑛

Figure 4: Definitions of the BRDF, the radiance and its adjoint.

𝑥 𝑥

The situation is shown in the Figure 4. The angles for the radiance in a forward pass are related to the

angles for the importance by the following relations: �̂�𝑜𝑢𝑡 = −𝜔𝑖𝑛 and �̂�𝑖𝑛 = −𝜔𝑜𝑢𝑡.

We can generate random paths in the environment as follows. We start at the receiver and then trace

rays until we hit an emitter as shown in Figure 3. For each incoming ray we generate an outgoing ray

randomly from a Probability Distribution Function (PDF) 𝑝(𝜔). Appendix B shows how to generate such

rays. The random path so created is denoted by a sequence of points: 𝑥0, 𝑥1, ⋯ , 𝑥𝑁 with associated

surface normals 𝑛0, 𝑛1, ⋯ , 𝑛𝑁 as shown in Figure 5 above. The receiver is situated at the start point 𝑥0

and the emitter is located at the end point 𝑥𝑁. For each pair of points on the path we associate a unit

direction:

𝜔𝑘 =
𝑥𝑘+1 − 𝑥𝑘

‖𝑥𝑘+1 − 𝑥𝑘‖
, 𝑘 = 0, ⋯ , 𝑁 − 1.

We have by construction that 𝑛𝑘 ∙ 𝜔𝑘 > 0 and 𝑛𝑘 ∙ 𝜔𝑘−1 < 0. Since radiances and adjoints are constant

along each ray we have that:

𝐿(𝜔𝑘) = 𝐿(−𝜔𝑘) and 𝑃(𝜔𝑘) = 𝑃(−𝜔𝑘).

Our goal is to minimize a cost function which we assume for simplicity to only depend on the radiance at

the emitter and a set of control variables 𝜃:

𝐽 ← 𝐽(𝐿(𝜔0), 𝜃).

Our goal is to compute the gradient
𝑑𝐽

𝑑𝜃
 using the adjoint method described above.

We compute the radiance at the receiver in a forward pass. First, we initialize the radiance at the

emitter:

𝐿(𝜔𝑁−1) = 𝐿𝑁,𝜃(−𝜔𝑁−1).

Where the 𝜃 subscript indicates that a function depends on the controls. The radiances along the path

are then computed using the BRDF 𝜌𝑘,𝜃 and the PDF 𝑝𝑘,𝜃 of the surfaces:

𝐿(𝜔𝑘−1) = 𝜌𝑘,𝜃(𝑛𝑘, 𝜔𝑘 , −𝜔𝑘−1)(𝑛𝑘 ∙ 𝜔𝑘)𝐿(𝜔𝑘)/𝑝𝑘,𝜃(𝜔𝑘) for 𝑘 = 𝑁 − 1, ⋯ ,1.

This gives us the incoming radiance 𝐿(𝜔0) at the receiver. From this radiance we can compute the cost

function 𝐽(𝐿(𝜔0), 𝜃) and its adjoint

𝑃(𝜔0) =
𝜕𝐽

𝜕𝐿
(𝐿(𝜔0), 𝜃).

Then we proceed with a backward pass to compute the adjoints starting with 𝑃(𝜔0):

𝑃(𝜔𝑘) = 𝜌𝑘,𝜃
∗ (𝑛𝑘, −𝜔𝑘−1, 𝜔𝑘)(−𝑛𝑘 ∙ 𝜔𝑘−1)𝑃(𝜔𝑘−1)/𝑝𝑘,𝜃(𝜔𝑘−1) for 𝑘 = 1, ⋯ , 𝑁 − 1.

The gradient of the cost function
𝑑𝐽

𝑑𝜃
 is computed alongside with the adjoint as follows. We initially set

this gradient to zero

𝑑𝐽

𝑑𝜃
= 0

and then incrementally updated it at each step of the backward pass:

𝑑𝐽

𝑑𝜃
+= (𝑃(𝜔𝑘−1) ∙ 𝐿(𝜔𝑘))

𝜕𝜌𝑘,𝜃

𝜕𝜃
.

Although this seems like an expensive step when there are many controls. We notice that in general

only the subset of controls that the BRDF 𝜌𝑘,𝜃 depends on must be updated. In practice this subset is

much smaller than the total number of controls: the entire control vector is rarely updated. We finish

the backward trace with an update of the gradient at the emitter:

𝑑𝐽

𝑑𝜃
+= (𝑃(𝜔𝑁−1) ∙

𝜕𝐿𝑁,𝜃

𝜕𝜃
).

The pair (𝐽,
𝑑𝐽

𝑑𝜃
) can then be fed to an optimizer to return a new set of controls 𝜃 and the whole process

is iterated.

5.2 A Simple Example5

As a simple example we consider the diffuse Lambertian BRDF:

𝜌𝜃(𝑛, 𝜔0, 𝜔1) =
𝜃1

𝜋
,

a simple emitter:

𝐿𝜃(𝜔) = 𝜃2𝐸𝑁

and a PDF that generates cosine weighted random samples:

𝑝(𝜔) =
cos 𝜗

𝜋
 with 𝜔 = (𝜗, 𝜑).

 The control is therefore a 2-vector: 𝜃 = (𝜃1, 𝜃2). We assume a very simple cost function:

𝐽(𝐿) =
1

2
(𝐿 − �̂�)

2
,

where �̂� is the desired output for the output radiance. The adjoint at the receiver is then given by:

5 See also Appendix C for details on the Cook-Torrance BRDF.

𝜕𝐽

𝜕𝐿
= 𝐿 − �̂�.

The derivatives of the BRDF divided by the PDF and of the emission function are:

𝜕(𝜌𝜃/𝑝)

𝜕𝜃
= (

1
0

) and
𝜕𝐿𝜃

𝜕𝜃
= (

0
1

) 𝐸𝑁 .

This results in the following pseudo-code. Notice that we have
(𝑛𝑘∙𝜔𝑘)

𝑝(𝜔𝑘)
= 𝜋 and

−(𝑛𝑘∙𝜔𝑘−1)

𝑝(𝜔𝑘−1)
= 𝜋 because

our random directions are assumed to be cosine weighted. This leads to the following simple path

tracing algorithm.

Forward pass:

𝐿𝑁−1 = 𝜃2𝐸𝑁

 𝐟𝐨𝐫 𝑘 = 𝑁 − 1, ⋯ ,1 𝐝𝐨 {𝐿𝑘−1 = 𝜃1𝐿𝑘

Backward pass:

𝑑𝐽

𝑑𝜃
= (

0
0

)

𝑃0 = 𝐿0 − �̂�

𝐟𝐨𝐫 𝑘 = 1, ⋯ , 𝑁 − 1 𝐝𝐨 {

𝑃𝑘 = 𝜃1𝑃𝑘−1

𝑑𝐽

𝑑𝜃1
+= (𝑃𝑘−1 ∙ 𝐿𝑘)

𝑑𝐽

𝑑𝜃2
+= (𝑃𝑁−1 ∙ 𝐸𝑁)

It doesn’t get simpler than this!

6. Results

To validate our model, we have implemented a simple “Vanilla” text-book style path tracer. An outline

of the implementation in pseudo code is given in Appendix D. We decided to implement our own path

tracer rather than modifying an existing one so that we could focus on the core algorithm not on

compatibility and build issues. It also offers more flexibility in debugging and visualizing our results. Our

path tracer only handles ray/sphere and ray/quad intersections. Consequently, our scenes are restricted

to quads and spheres. Also, we consider only three types of materials.

M1: A pure emitter defined by its emission strength (𝜃1).

M2: A specular Phong-Blinn BRDF / PDF modelled by an ambient term (𝜃2), a diffuse term (𝜃3), a

specular term (𝜃4) and finally an exponent (𝜃5).

M3: A diffuse BRDF / PDF defined by an ambient term (𝜃6) and a diffuse term (𝜃7).

The associated controls are given in parenthesis, there are seven of them which we represent by a

vector 𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7). Our goal is to compute the gradient of the cost function with

respect to these controls.

To validate our model, we consider a simple “Cornell Box”-type scene. The scene is comprised of a box

with six quad walls having material M3, one quad light source at the top with material M1 and one

sphere in the center with material M2. The receiver is a pinhole camera defined by a screen located

inside the box. Figure 5 depicts the scene in our visualizer.

Figure 5. Two snapshots of our simple Path tracer. Left visualization of a single path and right a view of a rendered image and

some selected paths.

Our visualizer can depict any quantity we like for debugging purposes. On the left of Figure 5 we show a

single path, while on the right we show a subset of paths and the resulting rendered image. The ability

to trace a single path was very useful in comparing our model with estimations obtained from a finite

difference approximation of the gradients with respect to the controls. The approximation is obtained

by choosing a small number 𝜀 and computing

𝑑𝐽

𝑑𝜃𝑘
≅

𝐽(𝜃1, ⋯ , 𝜃𝑘 + 𝜀, ⋯ , 𝜃𝐾) − 𝐽(𝜃1, ⋯ , 𝜃𝑘 − 𝜀, ⋯ , 𝜃𝐾)

2𝜀

for each control. Therefore, we must run the path tracer a number 2𝐾 of times where 𝐾 = 7 in our

example. The right choice for the value of the perturbation 𝜀 is tricky. When 𝜀 is too big the estimate is

inaccurate and when it is too small, we loose numerical precision because we are subtracting two

nearby numbers. This is another strong argument for computing gradients using adjoints that do not

depend on an arbitrary small parameter. In fact our adjoints are accurate up to machine precision. We

found a sweet spot by varying the perturbation: 𝜀 = 0.1, 0.0001, … In Figure 6 we show these estimates

for different 𝜀 along with the results from our method at the top. We observe good agreement. Next,

we show renderings of the final image (top left) and the gradient for each of the seven controls. Figure 7

computes paths without importance sampling while in Figure 8 the paths are computed with a Phong-

Blinn importance sampling as described in Appendix B.

Figure 7. Renderings of the image (top/left) and the gradients with respect to the controls with cosine-weighted uniform

sampling.

Figure 6. Comparison of the gradients obtained with our method (top/left) and finite difference estimates for different values

of 𝜀.

J = 3.3162e-06
dJ/dcontrol =
0 0 3.56703 22.1649 0.134605 10 13.3333
---------- Numerical gradients ---------
EPS = 0.1
numerical dJ/dcost:
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.411622 - 0.691398) / 2*EPS = 3.601122
(6.075682 - 0.053732) / 2*EPS = 30.109749
(1.013496 - 0.986575) / 2*EPS = 0.134604
(2.250000 - 0.250000) / 2*EPS = 10.000000
(3.160494 - 0.197531) / 2*EPS = 14.814816

EPS = 0.0001
numerical dJ/dcost:
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000357 - 0.999644) / 2*EPS = 3.565848
(1.002218 - 0.997785) / 2*EPS = 22.164581
(1.000014 - 0.999987) / 2*EPS = 0.134408
(1.001000 - 0.999000) / 2*EPS = 10.000169
(1.001334 - 0.998668) / 2*EPS = 13.332068

EPS = 1e-07
numerical dJ/dcost:
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000001 - 1.000000) / 2*EPS = 4.768371
(1.000002 - 0.999998) / 2*EPS = 19.669531
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000001 - 0.999999) / 2*EPS = 8.642673
(1.000001 - 0.999999) / 2*EPS = 13.411044

EPS = 1e-10
numerical dJ/dcost:
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000
(1.000000 - 1.000000) / 2*EPS = 0.000000

Figure 8. Renderings of the image (top/left) and the gradients with respect to the controls with Phong-Blinn importance

sampling.

7. Conclusions and Future Work

In this work we have presented a novel general method to compute gradients of radiance in the context

of transport theory. To achieve this, we have derived an equation for the adjoint/Jacobian of the cost

function from the general theory of adjoints in optimization theory. We have shown that this can easily

be implemented in a simple home brewed path tracer. The results show good agreement with a finite

difference computation of the cost function.

In the future we want to extend the theory to more general settings including volumetric scatterers and

perhaps include diffraction effects. In these cases, we have to deal with an integro-integral equation and

a Kirchhoff integral, respectively. Also, we want to implement this method in various existing GPU-based

path tracers like Fermat.

References

[1] M. B. Giles and N. A. Pierce. An Introduction to the Adjoint Method to Design. Flow, Turbulence and

Combustion, 65:393-415, 2000.

[2] Andreas Griewank and Andrea Walther. Evaluating Derivatives. Principles and Techniques of

Algorithmic Differentiation. Society for Industrial and Applied Mathematic; Second edition (2008-09-26);

2nd Revised edition edition (1656). 2008.

[3] A. McNamara, A. Treuille, Z. Popovic and J. Stam. Fluid Control Using the Adjoint Method, ACM

Transactions on Graphics (SIGGRAPH 2004), Volume 23, Issue 3, August 2004.

[4] L.S. Pontryagin, V.G. Boltyanskie, Karreman Mathematics Research Collection, L.W. Neustadt, K.N.

Trirogoff, R.V. Gamkrelidze, and E.F. Misenko. The Mathematical Theory of Optimal Processes.

Interscience publishers. Interscience Publishers, 1962.

[5] Eric Veach, Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
dissertation, Stanford University, December 1997. Available at
http://graphics.stanford.edu/papers/veach_thesis/.

Appendices

A. Adjoint Equation

In this appendix we derive the adjoint equation (Eq. 8) and an expression for the derivative of the cost

function with respect to the controls (Eq. 9). Recall that the augmented Lagrangian is defined as

ℒ(𝑢, 𝑝, 𝜃) = 〈𝐽(𝑢, 𝜃)〉 + 〈𝑝, 𝐸(𝑢, 𝜃)〉.

Stationarity with respect to the state implies

0 =
𝜕ℒ

𝜕𝑢
𝛿𝑢 = 〈

𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈𝑝,

𝜕𝐸

𝜕𝑢
𝛿𝑢〉 → 〈

𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 = − 〈𝑝,

𝜕𝐸

𝜕𝑢
𝛿𝑢〉. (𝐴. 1)

From the same equation and using the definition of the adjoint we have that

0 = 〈
𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈𝑝,

𝜕𝐸

𝜕𝑢
𝛿𝑢〉 = 〈

𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈(

𝜕𝐸

𝜕𝑢
)

∗

𝑝, 𝛿𝑢〉 = 〈
𝜕𝐽

𝜕𝑢
+ (

𝜕𝐸

𝜕𝑢
)

∗

𝑝, 𝛿𝑢〉.

Since this equation must hold for all functions 𝛿𝑢 we get Eq. 8:

(
𝜕𝐸

𝜕𝑢
)

∗

𝑝 = −
𝜕𝐽

𝜕𝑢
.

Now consider the second condition:

0 =
𝜕ℒ

𝜕𝑝
= 𝐸(𝑢, 𝜃).

This is simply the equation that our state must satisfy the constraint and implies that its differential

vanishes

0 = 𝛿𝐸 =
𝜕𝐸

𝜕𝑢
𝛿𝑢 +

𝜕𝐸

𝜕𝜃
 →

𝜕𝐸

𝜕𝑢
𝛿𝑢 = −

𝜕𝐸

𝜕𝜃
. (𝐴. 2)

With these results we can compute the gradient of the cost function

𝛿𝒥 = 〈
𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈

𝜕𝐽

𝜕𝜃
〉 =⏟

𝐴.1

− 〈𝑝,
𝜕𝐸

𝜕𝑢
𝛿𝑢〉 + 〈

𝜕𝐽

𝜕𝜃
〉 =⏟

𝐴.2

〈𝑝,
𝜕𝐸

𝜕𝜃
〉 + 〈

𝜕𝐽

𝜕𝜃
〉.

http://graphics.stanford.edu/~ericv/
http://graphics.stanford.edu/papers/veach_thesis/

This is Eq. 9.

B. Sampling from a PDF

For simplicity we assume that the PDF is isotropic and thus only depends on the elevation angle:

𝑝(𝜔) = 2𝜋 𝑝(𝜗).

 We then generate a random sample 𝜔 from this distribution using the Cumulative Probability

Distribution (CDF):

𝑃(𝜗) = Prob(𝑡 ≤ 𝜗) = 2𝜋 ∫ 𝑝(𝑡) sin 𝑡 𝑑𝑡.
𝜗

0

This is a mapping from elevation angles in [0,
𝜋

2
] to the unit interval [0,1]. Using the inverse of the CDF

we can directly generate a 𝑝-distributed random angle 𝜗 from a uniformly distributed 𝑢~𝑈(0,1):

𝜗 = 𝑃−1(𝑢).

As an example, consider the cosine-weighted Phong-Blinn PDF depending on an exponent parameter

𝛼 ≥ 0 (for 𝛼 = 0 one obtains a cosine weighted Lambertian PDF). This PDF handles all cases considered

in this paper:

𝑝𝛼(𝜗) =
𝛼 + 2

2𝜋
(cos 𝜗)𝛼+1.

This gives the following CDF:

𝑃𝛼(𝜗) = (𝛼 + 2) ∫ (cos 𝑡)𝛼+1 sin 𝑡 𝑑𝑡
𝜗

0

= 1 − (cos 𝜗)𝛼+2.

With an inverse equal to:

𝜗 = Φ𝛼(𝑢) = 𝑃𝛼
−1(𝑢) = acos ((1 − 𝑢)

1
𝛼+2).

These results give us a recipe to generate random vectors for our path tracer from the PDFs given

above. The general algorithm works as follows. To generate a random vector 𝜔 in a world coordinate

frame (𝑋, 𝑌, 𝑍) with the 𝑍-vector being the normal direction:

Generate: 𝑢1, 𝑢2~𝑈(0,1).

Set: 𝜗 = Φ𝛼(𝑢1) and 𝜑 = 2𝜋𝑢2.

Random vector: �̅� = (�̅�𝑥 , �̅�𝑦, �̅�𝑧) = (cos 𝜑 cos 𝜗 , sin 𝜑 cos 𝜗 , sin 𝜗).

Convert to world space: 𝜔 = �̅�𝑥𝑋 + �̅�𝑦𝑌 + �̅�𝑧𝑍.

C. The Cook-Torrance and Phong-Blinn BRDF

In this appendix we give all the details for the Phong-Blinn model. We will use a variant of the Cook-

Torrance BRDF to simplify some of the resulting expressions. The goal here is not to faithfully reproduce

the original Cook-Torrance BRDF but to show the details on how to implement such a model in our

framework. The Cook-Torrance BRDF is usually defined as follows:

𝜌(𝑛, 𝜔𝑖, 𝜔𝑜) = 𝐹(𝑛, 𝜔𝑖, 𝜔𝑜)𝐺(𝑛, 𝜔𝑖, 𝜔𝑜)𝐷(𝜔𝑚),

Where 𝐹 account for Fresnel effects which we will set equal to one. 𝐺 is a geometric factor that

accounts for shadowing and the spread of the solid angles. We use the following expression:

𝐺(𝑛, 𝜔𝑖, 𝜔𝑜) =
(𝜔𝑚 ∙ 𝑛)

4(𝜔𝑚 ∙ 𝜔𝑜)(𝜔𝑖 ∙ 𝑛)
=

cos 𝜗𝑚

4 cos 𝜗𝑚𝑜 cos 𝜗𝑖
.

Where 𝜔𝑚 is the vector halfway between the incoming and the outgoing directions:

𝜔𝑚 =
𝜔𝑖 + 𝜔𝑜

‖𝜔𝑖 + 𝜔𝑜‖
.

This vector is the normal that perfectly reflects the incoming light into the outgoing direction and is

distributed according to a Normal Density Function (NDF) 𝐷(𝜔𝑚). In this appendix we will consider the

Phong-Blinn NDF (𝜔𝑚 = (𝜗𝑚, 𝜑𝑚)):6

𝐷𝑃𝐵,𝛼(𝜗𝑚, 𝜑𝑚) =
𝛼 + 2

2𝜋
(cos 𝜗𝑚)𝛼 sin 𝜗𝑚.

Notice that this distribution is not normalized since the right normalizing term should be (𝛼 + 1)/2𝜋.

Since we are not sampling from this distribution but the one given below this does not matter. This

choice does however simplify the expressions below. The incoming direction is a function of the normal

and the outgoing direction through the reflection law:

𝜔𝑖 = 𝑅𝑜(𝜔𝑚) = 2(𝜔𝑚 ∙ 𝜔𝑜)𝜔𝑚 − 𝜔𝑜.

And the corresponding differentials satisfy:

𝑑𝜔𝑖 = 𝑑𝑅𝑜(𝜔𝑚) = 4(𝜔𝑚 ∙ 𝜔𝑜)𝑑𝜔𝑚 = 4 cos 𝜗𝑚𝑜 sin 𝜗𝑚 𝑑𝜗𝑚𝑑𝜑𝑚.

The PDF for the cosine weighted Phong-Blinn model is given by:

𝑝𝛼(𝜗𝑚, 𝜑𝑚) =
𝛼 + 2

2𝜋
(cos 𝜗𝑚)𝛼+1 sin 𝜗𝑚.

6We point out that other choices for the NDF such as Beckmann or GGX are currently more popular. The

same methodology described here applies to those models as well.

This distribution is normalized, and we can therefore use it to sample random normals using the

procedure described in Appendix B.

In importance path tracing we evaluate the outgoing radiance as follows:

𝑑𝐿(𝜔𝑜) =
𝜌𝛼(𝑛, 𝜔𝑖, 𝜔𝑜)

𝑝𝛼(𝜔𝑚)
(𝜔𝑖 ∙ 𝑛)𝐿(𝜔𝑖)𝑑𝜔𝑖.

We can rewrite this in terms of the angles (𝜗𝑚, 𝜑𝑚) as follows where we also use all the expressions

derived above:

𝑑𝐿(𝜗𝑜, 𝜑𝑜) =
𝜌𝛼(𝜗𝑖, 𝜃𝑜)

𝑝𝛼(𝜗𝑚, 𝜑𝑚)
cos 𝜗𝑖 4 cos 𝜗𝑚𝑜 sin 𝜗𝑚 𝐿(𝑅𝑜(𝜔𝑚))𝑑𝜗𝑚𝑑𝜑𝑚

=

(

𝛼 + 2
2𝜋

(cos 𝜗𝑚)𝛼 sin 𝜗𝑚 cos 𝜗𝑚

4 cos 𝜗𝑚𝑜 cos 𝜗𝑖
) × cos 𝜗𝑖 4 cos 𝜗𝑚𝑜 sin 𝜗𝑚 𝐿(𝑅𝑜(𝜔𝑚))𝑑𝜗𝑚𝑑𝜑𝑚

(
𝛼 + 2

2𝜋
(cos 𝜗𝑚)𝛼+1 sin 𝜗𝑚)

= 𝐿(𝑅𝑜(𝜔𝑚)) sin 𝜗𝑚 𝑑𝜗𝑚𝑑𝜑𝑚.

After grand eliminations, we get the simple update rule:

𝑑𝐿(𝜔𝑜) = 𝐿(𝑅𝑜(𝜔𝑚)) sin 𝜃𝑚(𝛼) 𝑑𝜗𝑚𝑑𝜑𝑚.

To update the gradient of the cost function with respect to the exponent parameter 𝛼 we need to

differentiate this expression. The sine term depends on 𝛼 through the sampling procedure (see

Appendix B):

𝑠(𝛼) = sin 𝜃𝑚 (𝛼) = √1 − (1 − 𝑢)
2

𝛼+2.

And its derivative is:

𝑑𝑠

𝑑𝛼
(𝛼) =

(1 − 𝑢)
2

𝛼+2 log(1 − 𝑢)

(𝛼 + 2)2√1 − (1 − 𝑢)
2

𝛼+2

=
cos2 𝜗𝑚 log(cos𝛼+2 𝜗𝑚)

(𝛼 + 2)2 sin 𝜗𝑚
=

cos2 𝜗𝑚 log(cos 𝜗𝑚)

(𝛼 + 2) sin 𝜗𝑚
.

D. A Simple Path Tracer

In this Appendix we describe our simple path tracer in pseudo code. Instead of using an existing path

tracer and modifying it, we decided to write our own. Why? It is general, simple and self contained with

no external dependencies and no complicated data structures and optimizations. At the highest level it

works like this.

 func do_path_tracing(do_gradient)
 if do_gradient then
 cost = 0

 clear_gradients()
 end if

 for each image pixel do
 pixel_radiance = 0
 for N samples do
 create initial ray R
 make_path(R)
 radiance = forward_pass() / N
 pixel_radiance += radiance
 if do_gradient then
 cost += cost(radiance)
 adjoint = dcost_drad(radiance)
 backward_path(adjoint)
 end if
 end if

 end for
end

When do_gradient==false we just perform a standard path trace. This is how it works. First, we create

a path by intersecting the ray with the scene and spawning reflection vectors by sampling the

corresponding PDFs. Then we traverse the path from the emitters to the receivers in a forward pass

accumulating the radiance to generate a final radiance. To compute the gradients, we first compute the

adjoint which is the Jacobian of the cost with respect to the radiance. Then, we perform a backward

pass updating the adjoint and updating the gradient of each active control. The first step builds a path

recursively.

func make_path(R)
 hit = int_scene(R)
 if hit!=0 and R->depth < MAX_DEPTH then
 u = unif(0,1)
 if u >= hit->absorb then
 dir = hit->sample(hit->normal,R->dir)
 R_new = make_ray(R->depth+1, hit->point, dir)
 make_path(R_new)
 end if
 path[R->depth]->{hit, dir_i, dir_o} = {hit, R->dir, dir}
 end if
 end

Once the path is created, we perform a forward pass.

 func forward_pass()
 N = path length
 hit = path[N-1]->hit
 radiance = hit->emission / hit->absorb
 for k=N-2 to k>=0 do
 {hit, dir_i, dir_o} = path[k]->{hit, dir_i, dir_o}
 path[k]->radiance = radiance
 radiance = hit->BSDF_D_PDF(hit->normal, dir_o, -dir_i) * radiance
 end for
 return radiance
 end

After computing the cost and the adjoint we then perform a backward pass:

func backward_pass(adjoint)
 N = path length
 for k=0 to N-2 do
 {hit, dir_i, dir_o, radiance} = path[k]->{hit, dir_i, dir_o, radiance}
 radiance /= 1 - hit->absorb
 hit->update_BSDF_D_PDF_gradients(hit->normal, -dir_i, dir_o, radiance,

adjoint)
 adjoint = hit->BSDF_D_PDF(hit->normal, -dir_i, dir_o) * adjoint
 end for
 hit = path[N-1]->hit
 radiance = hit->emission / hit->absorb
 hit->emission_gradient += radiance * adjoint
 adjoint = 0
end

The routines in italicized bold face must be provided for a particular BSDF/PDF. Here are the

implementations for Lambert

func sample(normal, dir)

 u1, u2 = unif(0,1)

 c = sqrt(1-u1)

 s = sqrt(u1)

 (x,y,z) = (cos(2*PI*u2)*c, sin(2*PI*u2)*c, s)

 make_frame(normal, X, Y, Z)

 return x*X + y*Y + z*Z

end

func BSDF_D_PDF(normal, dir_i, dir_o)

 return diff_col

end

func update_BSDF_D_PDF_gradients(normal, dir_i, dir_o, radiance, adjoint)

 diff_gradient += radiance*adjoint

end

And for Phong-Blinn

func sample(normal, dir)

 u1, u2 = unif(0,1)

 t = pow(u1,2/(exponent+2))

 c = sqrt(1-t)

 s = sqrt(t)

 (x, y, z) = (cos(2*PI*u2)*c, sin(2*PI*u2)*c, s)

 make_frame(normal, X, Y, Z)

 N = x*X + y*Y + z*Z

 if dot(N,dir) < 0 then N = 2*dot(N,normal)*normal – N end if

 return 2*dot(N,dir)*N - dir

end

func BSDF_D_PDF(normal, dir_i, dir_o)

 dir_m = normalize(dir_i + dir_m)

 cos_m = dir_m*normal

 cos2_m = cos_m*cos_m

 sin_m = sqrt(1-dir_m*dir_m)

 return spec_col * sin_m

end

func update_BSDF_D_PDF_gradients(normal, dir_i, dir_o, radiance, adjoint)

 dir_m = normalize(dir_i + dir_m)

 cos_m = dir_m*normal

 cos2_m = cos_m*cos_m

 sin_m = sqrt(1-cos2_m)

 dsin_m = cos2_m * log(cos_m) / sin_m / (alpha+2)

 spec_gradient += sin_m * (radiance*adjoint)

 alpha_gradient += spec_col * dsin_m * (radiance*adjoint)

end

The function make_frame() generates an orthonormal frame from the normal:

func make_frame(N, X, Y, Z)

 Z = N

 X = Z + (0.1, 0.2, 0.3)

 Y = normalize(cross(Z,X))

 X = normalize(cross(Y,Z))

end

The orientation of the frame along the normal does not matter because we only consider isotropic

BRDFs in this paper.

