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Abstract 

This paper proposes a new equation from continuous adjoint theory to compute the gradient of 

quantities governed by the Transport Theory of light. Unlike discrete gradients ala autograd1, which 

work at the code level, we first formulate the continuous theory and then discretize it. The key insight of 

this paper is that computing gradients in Transport Theory is akin to computing the importance, a 

quantity adjoint to radiance that satisfies an adjoint equation. Importance tells us where to look for light 

that matters. This is one of the key insights of this paper. In fact, this mathematical journey started from 

a whimsical thought that these adjoints might be related.  Computing gradients is therefore no more 

complicated than computing the importance field. This insight and the following paper hopefully will 

shed some light on this complicated problem and ease the implementations of gradient computations in 

existing path tracers. 

1. Introduction 

In this paper we present a general framework for computing gradients in the context of light 

propagation. Gradients are of central importance in the fields of machine learning, computer vision and 

computer graphics. Often, we need to invert a simulation like a rendering to recover hidden control 

parameters. For smooth problems the gradient is a key instrument in methods such as gradient descent 

or quasi-Newton iteration. This paper is concerned with computing the gradient of a solution to a 

transport equation. In order to achieve this goal, we derive a continuous adjoint equation for the 

gradient of the radiance. This equation is a generalization of the usual backpropagation algorithm 

popular in deep learning. We show that the adjoint equation for the gradient is almost identical to the 

adjoint equation for the importance in transport theory. The only difference is a different source term 

that is equal to the initial gradient of the cost function with respect to the radiance field. 

The method of computation is akin to a bi-directional Monte Carlo solution using radiance and 

importance. First the transport equation is solved for the radiance forward from the light sources to the 

receivers (camera/eye). Then the adjoint transport equation is solved backwards from the receiver for 

the adjoint of the gradient of radiance similarly to the importance. As the propagation progresses 

backwards, we update the gradients of the cost function with respect to the controls acting at that point 

in the path. The reader familiar with backpropagation in deep learning will appreciate the analogy with 

 
1 Autograd is just one of many packages out there that computes differentials at the code level. See 
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html for more details and [2] for an excellent 
introduction to Automatic Differentiation. 

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html


forward and backward propagation in neural networks. Keep this in mind when reading this paper. In 

fact, the adjoint theory of optimization is the backbone of backpropagation. 

We contrast our approach with a purely autograd style of computing the gradient. Indeed, one could 

automatically translate the code of a renderer into its adjoint (or reverse) version and thus obtain the 

gradient. This approach is known as D.T.O: Discretize Then Optimize. On the other hand, our approach 

falls in the category of O.T.D: Optimize Then Discretize methods. We derive the adjoint equation in the 

continuous setting and then discretize and reuse a standard implementation of a path tracer renderer. 

This is because the adjoint equation is almost identical to the computation of importance. Of course, the 

differentials appearing in the transport process that depend on the controls must be differentiated, 

either analytically or using automatic differentiation.   

This paper does not address the problem of smoothing non-continuous terms in the transport equation. 

The problem of handling discontinuities is orthogonal to the approach taken in this paper. We think that 

uncovering the mathematical structure in a smooth setting sheds another light on the problem and 

might lead to simplifications, insights and better implementations. We assume in our derivations that 

each function is differentiable. For non-differentiable terms some regularization or some weaker form of 

differentiability could be used (distribution theory for example). 

The rest of the paper is organized as follows. Section 2 provides the necessary theoretical background of 

transport theory. Section 3 gives a brief overview of the continuous adjoint method in optimization. 

Section 4 presents the derivation of the adjoint equation in Transport Theory setting for radiance and its 

adjoint for the computation of the gradient of the cost function.  Section 5 provides details of a simple 

implementation while Section 6 discusses several applications. Finally, we conclude in Section 7 and 

mention directions for future research. 

But first as an appetizer we present some necessary results from functional analysis and fix notations. 

1.1 Some Functional analysis 

Let ℱ = ℱ(Ω, ℝ𝑛) be the Hilbert space of all functions mapping a continuous domain Ω to ℝ𝑛 equipped 

with the following inner product: 

〈𝑓, 𝑔〉 = ∫ 𝑓∗(𝑥)𝑔(𝑥)𝑑𝑥,             
Ω

 where 𝑓, 𝑔 ∈ ℱ. 

This induces a norm on the space: |𝑓| = √〈𝑓, 𝑓〉, we will also denote 〈𝑓〉 = 〈1, 𝑓〉 = ∫ 𝑓(𝑥)𝑑𝑥
Ω

, the 

integral of 𝑓 over the entire domain Ω. An operator is simply a linear function 𝐀 ∶ ℱ → ℱ. The adjoint of 

𝐀 is an operator denoted by 𝐀∗ that satisfies 

〈𝐀𝑓, 𝑔〉 = 〈𝑓, 𝐀∗𝑔〉                for all 𝑓, 𝑔 ∈ ℱ. 

An operator that satisfies 𝐀 = 𝐀∗ is called self adjoint. An important example is an operator defined by 

a kernel 𝐾(𝑥, 𝑦) as follows: 



𝐊𝑥 = 〈𝐾(𝑥,∙),∙〉 = ∫ 𝐾(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦
Ω

. 

We have the identities: (𝐀 + 𝐁)∗ = 𝐀∗+𝐁∗ and (𝐀𝐁)∗ = 𝐁∗𝐀∗. Differentials of operators are to be 

understood as a Fréchet Derivative. The operator 𝐀 is differentiable at 𝑓 if there exist an operator 𝐃 

(the derivative of 𝐀 at 𝑓) such that 

lim
|ℎ|→0

|𝐀(𝑓 + ℎ) − 𝐀(𝑓) − 𝐃ℎ|

|ℎ|
= 0. 

For all sequences ℎ = {ℎ𝑛}𝑛=1
∞  with ℎ𝑛 → 0 as 𝑛 → ∞. 

Fun fact: the Fréchet derivative of the Dirac delta operator: 𝛿 ∶  𝐶∞(Ω) → ℝ ⊂ 𝐶∞(Ω) ∶  𝜑 ⟼ 𝜑(0) is 

𝛿′ ∶ 𝜑 ⟼ −𝜑′(0). In general 𝛿(𝑘) ∶ 𝜑 ⟼ (−1)𝑘𝜑(𝑘)(0). It’s just integration by parts via Riesz’ 

Theorem. Yeah, a Dirac delta is not a weird function but an operator also known as a distribution. 

 

 

2. Light Transport and the Adjoint Formulation2 

We assume that our environment is comprised of a set of surfaces denoted by S. The environment 

between the surface is empty (no participating media) and light travels in straight lines between surface 

points. The properties of light like radiance are constant along each ray with changes occurring only at 

the surfaces. Consequently, the functions we will consider are defined over the space of rays spanned by 

the surfaces:  

 
2 This Section is inspired by Eric Veach’s excellent PhD thesis [5]. 
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Figure 1: Geometry at a surface point and the decomposition of the radiance into outgoing and incoming parts. 



ℛ = {�̅� = 𝑥 → 𝑥′ with 𝑥, 𝑥′ ∈ 𝑆}. 

This space is four-dimensional since each ray is defined by a the two-coordinates of its endpoints on 

each surface. We distinguish one of these points as the origin of the ray. This is indicated by the arrow 

notation: �̅� = 𝑥 → 𝑥′. Such that the ray with the opposite direction is denoted by (−�̅�) =  𝑥′ → 𝑥. The 

fundamental quantity in light transport is the radiance field: 

𝐿(�̅�) = 𝐿(𝑥 → 𝑥′) 

which has physical units of radiant energy per area per solid angle: 𝑊 ∙ 𝑚−2 ∙ 𝑠𝑟−1. In the following it 

will be convenient to distinguish between incoming radiances 𝐿(𝑖) and outgoing radiances 𝐿(𝑜) with 

respect to the normal 𝐧 at a point on the surface. This is illustrated in Fig. 1. We have by convention 

that: 

𝐿(�̅�) = {
𝐿(𝑜)(�̅�)  if cos 𝜗 > 0

𝐿(𝑖)(−�̅�)   if cos 𝜗 < 0
 

Where 𝜃 is the angle between the ray and the surface normal. These two fields are related by a 

propagator operator as follows: 

(𝐏𝐿)(�̅�) = 𝐿(−�̅�) 

It follows that we have 𝐿(𝑖) = 𝐏𝐿(𝑜) and 𝐿(𝑜) = 𝐏𝐿(𝑖). This operator is self-adjoint. 

Light sources are modeled by an emitter field 𝐿0
(𝑜)

(�̅�), while the interaction at the surfaces is given by a 

scattering kernel 

𝐾(�̅�, �̅�) = 𝑓𝑠(𝑥 → 𝑥′, 𝑦 → 𝑦′)𝛿(𝑦 − 𝑥′) 

Where 𝑓𝑠 is the bi-directional scattering function (BSDF) and 𝛿 is the Dirac-delta operator. The transport 

equation relates the radiance along a ray to sources and scattered radiances: 

𝐿(�̅�) = 𝐿0
(𝑜)(�̅�) + ∫ 𝐾(�̅�, �̅�)𝐿(�̅�

ℛ

)𝑑𝜇(�̅�)      (1) 

 Where the integration measure is defined by 

𝑑𝜇(�̅�) = 𝑉(�̅�)
cos 𝜗 cos 𝜗′

|𝑦 − 𝑦′|2
𝑑𝑦𝑑𝑦′. 

The visibility function 𝑉(�̅�) is equal to one when 𝑦 is visible from 𝑦′ along the ray �̅� = 𝑦 → 𝑦′ and zero 

otherwise (possibly smoothed for the sake of differentiability). Furthermore 𝜗 and 𝜗′ are the angles 

between the incoming and outgoing rays and the normal at the surface point 𝑦 = 𝑥′. Eq. 1 can be 

written more compactly using a transport operator 𝐓(�̅�) = 〈𝐾(�̅�,∙),∙〉 for the scattering operation: 

𝐿 = 𝐿0
(𝑜)

+ 𝐓𝐿.    (2) 



This is the transport equation for the radiance. Formally we can solve this equation using a Neumann3 

series as follows: 

𝐿 = 𝐒𝐿0
(𝑜)

= (𝐈 − 𝐓)−1𝐿0
(𝑜)

= (𝐈 + 𝐓 + 𝐓2 + 𝐓3 + ⋯ )𝐿0
(𝑜)

.    (3) 

This series has a physical interpretation. The final radiance is equal to successive contributions involving 

increasing orders of scatter events. Given the radiance function 𝐿 we can measure its value using a 

receiver function 𝑊1
(𝑖)

(�̅�) as follows: 

𝐼 = 𝐼(𝐿) = ∫ 𝑊1
(𝑖)

(�̅�)𝐿(𝑖)(�̅�
ℛ

)𝑑𝜇(�̅�) = 〈𝑊1
(𝑖)

, 𝐿(𝑖)〉.    (4) 

This is the quantity that we are essentially interested in computing. Using the propagator and the 

scattering operators we can rewrite the measured radiance: 

𝐼 = 〈𝑊1
(𝑖)

, 𝐿(𝑖)〉 = 〈𝑊1
(𝑖)

, 𝐏𝐒𝐿0
(𝑜)

〉 = 〈(𝐏𝐒)∗𝑊1
(𝑖)

, 𝐿0
(𝑜)

〉 = 〈𝐒∗𝐏𝑊1
(𝑖)

, 𝐿0
(𝑜)

〉 = 〈𝑊(𝑜), 𝐿0
(𝑜)

〉 

The final radiance at a point can therefore be computed in two different ways. Either by propagating the 

source emitter or by propagating the receiving detector. For the latter we need to compute the adjoint 

of the scattering operator to obtain the importance field: 

𝑊 = 𝐒∗𝑊1
(𝑜)

.    (5) 

From Eq. 3 it follows that: 

𝐒∗ = 𝐈 + 𝐓∗ + 𝐓∗2 + 𝐓∗3 + ⋯ = (𝐈 − 𝐓∗)−1. 

Where 𝐓∗ = 〈𝐾∗(�̅�,∙),∙〉 and 𝐾∗(�̅�, �̅�) = 𝐾(−�̅�, −�̅�). So that the importance field satisfies the adjoint 

transport equation 

𝑊 = 𝑊1
(𝑜)

+ 𝐓∗𝑊.     (6) 

To summarize: we have two alternative ways to compute the radiance 𝐼 at the receiver/emitter. The 

first approach which we call the forward method is to solve for the radiance using the successive 

scatterings of the emitter (Eq. 3) and then compute the final radiance from 

𝐼 = 〈𝑊1
(𝑖)

, 𝐒𝐿0
(𝑖)〉 = 〈𝑊1

(𝑖)
, 𝐿1

(𝑖)〉. 

In the forward mode we basically propagate radiance rays from the emitter to the receiver. 

Alternatively, we can use a backward method which solves for the importance by scattering the receiver 

(Eq. 5) and then compute the final radiance using  

 
3 Not named after the famous John Von Neumann (Hungarian-American) but Carl Neumann (German). In high 
school you probably learned that 1 + 𝑥 + 𝑥2 + ⋯ = 1 (1 − 𝑥)⁄  for |𝑥| < 1. Well it is also true for operators when 
|𝐓| < 1. But in some sense 1 + 2 + 22 + ⋯ = −1 is fun nonsense. 



𝐼 = 〈𝐒∗𝑊1
(𝑜)

, 𝐿0
(𝑜)

〉 = 〈𝑊0
(𝑜)

, 𝐿0
(𝑜)

〉. 

The backward mode traces importance rays from the receiver to the emitter. Hybrid schemes are also 

possible. Where one can start two sets of propagating rays, one starting from the emitter and the other 

starting at the receiver connecting them somewhere in the middle. This technique is known as bi-

directional ray tracing in computer graphics. 

This concludes our brief overview of light transport theory and the role of the adjoint transport operator 

in connecting radiance and importance. 

 

Figure 2: Radiance (forward) and Importance (backward) propagation. 

3. The Continuous Adjoint Method in Optimization4  

The goal of optimization is to find the minimum (maximum) of a cost function 𝒥(𝑢, 𝜃) depending on a 

state 𝑢 and a control 𝜃. Both the state and the control are continuous functions depending on a variable 

𝜔 ∈ Ω ⊂ ℝ𝑑. The state and the control are also constrained to satisfy an equation 𝐸(𝑢, 𝜃) = 0. For 

example, in the case of Ordinary Differential Equations, the continuous variable is time and the state 

must satisfy a differential equation: 𝐸(𝑢, 𝜃) = −�̇�(𝑡) + 𝑓(𝑢(𝑡), 𝜃(𝑡)). The fundamental problem of 

continuous optimization (and machine learning) can be stated concisely as: 

𝐅𝐢𝐧𝐝 𝜃∗ = argmin
𝜃

𝒥(𝑢, 𝜃)  𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 𝐸(𝑢, 𝜃) = 0,           (7) 

 
4 The continuous adjoint method was first introduced by Pontryagin and coworkers in [4]. The article by Giles and 
Pierce is a very good introduction [1]. The adjoint method was first applied in computer graphics to control fluid-
like animations [3]. 
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where 𝑢(𝜔) ∈ ℝ𝑛, 𝜃(𝜔) ∈ ℝ𝑚 and 𝐸(𝑢, 𝜃) ∈ ℝ𝑘. We assume that the cost function is defined over the 

entire domain: 

𝒥(𝑢, 𝜃) = ∫ 𝐽(𝑢(𝜔), 𝜃(𝜔))𝑑𝜔 = 〈𝐽(𝑢, 𝜃)〉
Ω

. 

However, in many applications the cost function is only defined at a finite set of points �̂�𝑠 ∈ Ω: 

𝒥(𝑢, 𝜃) =
1

2
∑|𝑢(�̂�𝑠) − �̂�𝑠|2

𝑁

𝑠=1

 

Where the �̂�𝑠 ∈ ℝ𝑛 (𝑠 = 1, ⋯ , 𝑁) are the desired states. This is a common type of cost function for 

least square optimization and supervised (deep) learning. 

In a smooth setting where all functions are assumed to de differentiable optimization and learning 

algorithms rely heavily on the gradient of the cost function. Consequently, a lot of research in these 

fields is devoted to computing this gradient. In fact, it is the fundamental challenge. The research 

described in this paper is no exception! For example, both gradient descent and quasi-Newton iterative 

methods rely heavily on a gradient of the cost function. 

More precisely, given a cost function we are interested in computing the gradient of the cost function 

with respect to the controls: 

𝛿𝒥 =
𝑑𝒥

𝑑𝜃
. 

That is the holy grail we are after. Notice that the “𝛿” symbol is a short-hand for “𝑑 𝑑𝜃⁄ ” not the Dirac-

delta function: 𝛿𝑋 means a variation of 𝑋 with respect to the control 𝜃. 

Constrained optimization problems like Eq. 7 can be transformed into unconstrained problems using the 

machinery of Lagrange multipliers. In the continuous setting one introduces a Lagrange multiplier 

function 𝑝(𝜔). We then augment the cost function with a penalty term involving the multiplier and the 

constraint: 

ℒ(𝑢, 𝑝, 𝜃) = 𝒥(𝑢, 𝜃) + ∫ 𝑝(𝜔)∗𝐸(𝑢(𝜔), 𝜃(𝜔))𝑑𝜔
Ω

= 〈𝐽(𝑢, 𝜃)〉 + 〈𝑝, 𝐸(𝑢, 𝜃)〉. 

This is the less familiar continuous version of the Lagrangian. The necessary conditions for optimality are 

(where the derivatives are Fréchet): 

𝜕ℒ

𝜕𝑢
= 0    

𝜕ℒ

𝜕𝑝
= 0    and    

𝜕ℒ

𝜕𝜃
= 0. 

From the first condition we get an adjoint equation for the multiplier (see Appendix A) 



(
𝜕𝐸

𝜕𝑢
)

∗

𝑝 = −
𝜕𝐽

𝜕𝑢
.     (8) 

This equation is independent of the controls! This is the key reason why the adjoint method is so 

popular in optimization and machine learning. The consequence is that computing the gradient is no 

more costly then computing the function itself. The Lagrange multiplier is usually called the adjoint 

function in the optimization literature. Intuitively, the adjoint function models the sensitivity of the cost 

function with respect to the state independently of the controls. Once the adjoint function is computed 

we obtain the gradient of the cost function with respect to the controls as follows (see Appendix A) 

𝑑𝒥

𝑑𝜃
= 〈𝑝,

𝜕𝐸

𝜕𝜃
〉 + 〈

𝜕𝐽

𝜕𝜃
〉.     (9) 

Computing the gradient of the cost function therefore involves two steps. The solution of the adjoint 

equation for 𝑝(𝜔) and the evaluation of the gradient. These equations are very general and can be 

applied to most optimization and machine learning problems. Next, we apply this methodology to the 

transport theory of light propagation. 

4. Adjoint Method Applied to Transport Theory 

We now combine the adjoint method with the transport equations. An example of a cost function in 

rendering is 

𝐽(𝐿, 𝜃) =
1

2
∑|𝐼𝑠(𝐿) − 𝐼𝑠|

2

𝑁𝑠

𝑠=1

+
1

2
𝜀|𝜃|2.    (10) 

Where the sum is over the receivers and the 𝐼𝑠 are some target values and 𝜀 ≥ 0 models the 

smoothness of the control. In this case the gradient is: 

𝑑𝐽

𝑑𝜃
= ∑(𝐼𝑠(𝐿) − 𝐼𝑠)

𝑑𝐼𝑠

𝑑𝜃

𝑁𝑠

𝑠=1

+ 𝜀𝜃. 

Our method can of course handle more general cost functions. But it is helpful to hold this typical 

example in your mind. Why? Because we are really after computing the gradient of the radiance with 

respect to the controls. Let that sink in. From Eq. 4 we have that 

𝑑𝐼𝑠

𝑑𝜃
= 〈

𝑑𝑊1
(𝑖)

𝑑𝜃
, 𝐿(𝑖)〉 + 〈𝑊1

(𝑖)
,
𝑑𝐿(𝑖)

𝑑𝜃
〉. 

In general, we assume that the transport operator and the emitters depend on the control function 

𝜃(𝜔). Consequently, our transport equation (Eq. 2) becomes: 

𝐸(𝐿, 𝜃) = −𝐿 + 𝐓𝜃𝐿 + 𝐿0,𝜃
(𝑜)

= 0. 



Where the subscript denotes dependence of a function/operator on the control 𝜃 not differentiation. Its 

differential with respect to the radiance is: 

𝜕𝐸

𝜕𝐿
= −𝐈 + 𝐓𝜃. 

And an equation for the adjoint function 𝑝(𝜔) follows from Eq. 8: 

−𝑝𝐈 + (𝐓𝜃)∗𝑝 = −
𝜕𝐽

𝜕𝐿
.    (11) 

This equation can be written using the Neumann series (Eq. 5) 

𝑝0 = (𝐒𝜃)∗𝑝1.   (12) 

Equation 12 is the main result of this paper. 

This equation is exactly the adjoint transport equation for the importance field with a different source 

term: 

𝑝1 =
𝜕𝐽

𝜕𝐿
.   (13) 

And we have for the particular cost function given by Eq. 10 that  

𝑝1 = (𝐼𝑠(𝐿) − 𝐼𝑠)
𝜕𝐼𝑠(𝐿)

𝜕𝐿
. 

Eq. 12 does not depend on the number of controls and is therefore as efficient to solve as the adjoint 

transport equation for the importance. It also does not need the computation of derivatives with 

respect to the controls. This is a direct consequence of the fact that the transport operator is linear with 

respect to the radiance. The same operator is used for the equation of the adjoint function 𝑝(𝜔). While 

solving the adjoint through propagation we compute the gradients of the cost function sequentially with 

respect to the controls at each scatter/emitter from Eq. 9: 

𝑑𝐽

𝑑𝜃
= 〈𝑝, (

𝜕𝐓𝜃

𝜕𝜃
) 𝐿 +

𝜕𝐿0,𝜃
(𝑜)

𝜕𝜃
〉 +

𝜕𝐽

𝜕𝜃
.   (14) 

Equation 14 is the second main result of this paper. 

This step requires the derivatives of the transport operator and the emitter with respect to the controls. 

These derivatives can be computed analytically or through automatic differentiation. 



5. Implementation 

5.1 Path Tracing 

First, we introduce the standard notations used in computer graphics: each ray is defined by a position 𝑥 

and a direction 𝜔. Let  𝑛 be the surface normal at this point. The outgoing radiance 𝐿(𝜔𝑜𝑢𝑡) due to an 

incoming radiance 𝐿(𝜔𝑖𝑛) is given by a Bidirectional Reflectance Distribution Function (BRDF): 

𝐿(𝜔𝑜𝑢𝑡) = 𝜌(𝑛, −𝜔𝑖𝑛, 𝜔𝑜𝑢𝑡)(𝑛 ∙ 𝜔𝑖𝑛)𝐿(𝜔𝑖𝑛). 

Where 𝜌(𝑛, 𝜔𝑖𝑛, 𝜔𝑜𝑢𝑡) is the BRDF. The minus sign in front of the incoming direction 𝜔𝑖𝑛 is there 

because the BDRF is usually defined with both vectors pointing outwards from the surface. However, in 

path tracing the directions shown in Figure 4 are more natural. Similarly, the outgoing adjoint 𝑃(�̂�𝑜𝑢𝑡) 

in direction �̂�𝑜𝑢𝑡 due to an incoming adjoint 𝑃(�̂�𝑖𝑛) from a direction �̂�𝑖𝑛 is related via the adjoint 𝜌∗ of 

the BRDF: 

𝑃(�̂�𝑜𝑢𝑡) = 𝜌∗(𝑛, −�̂�𝑖𝑛, �̂�𝑜𝑢𝑡)(𝑛 ∙ �̂�𝑖𝑛)𝑃(�̂�𝑖𝑛). 

𝜔𝑘 

Figure 3: Geometry of a path. 
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Figure 4: Definitions of the BRDF, the radiance and its adjoint. 

𝑥 𝑥 



The situation is shown in the Figure 4. The angles for the radiance in a forward pass are related to the 

angles for the importance by the following relations: �̂�𝑜𝑢𝑡 = −𝜔𝑖𝑛 and �̂�𝑖𝑛 = −𝜔𝑜𝑢𝑡. 

We can generate random paths in the environment as follows. We start at the receiver and then trace 

rays until we hit an emitter as shown in Figure 3. For each incoming ray we generate an outgoing ray 

randomly from a Probability Distribution Function (PDF)  𝑝(𝜔). Appendix B shows how to generate such 

rays. The random path so created is denoted by a sequence of points: 𝑥0, 𝑥1, ⋯ , 𝑥𝑁 with associated 

surface normals 𝑛0, 𝑛1, ⋯ , 𝑛𝑁 as shown in Figure 5 above. The receiver is situated at the start point 𝑥0 

and the emitter is located at the end point 𝑥𝑁. For each pair of points on the path we associate a unit 

direction: 

𝜔𝑘 =
𝑥𝑘+1 − 𝑥𝑘

‖𝑥𝑘+1 − 𝑥𝑘‖
, 𝑘 = 0, ⋯ , 𝑁 − 1. 

We have by construction that 𝑛𝑘 ∙ 𝜔𝑘 > 0 and 𝑛𝑘 ∙ 𝜔𝑘−1 < 0. Since radiances and adjoints are constant 

along each ray we have that: 

𝐿(𝜔𝑘) = 𝐿(−𝜔𝑘)  and   𝑃(𝜔𝑘) = 𝑃(−𝜔𝑘). 

Our goal is to minimize a cost function which we assume for simplicity to only depend on the radiance at 

the emitter and a set of control variables 𝜃: 

𝐽 ← 𝐽(𝐿(𝜔0), 𝜃). 

Our goal is to compute the gradient 
𝑑𝐽

𝑑𝜃
 using the adjoint method described above. 

We compute the radiance at the receiver in a forward pass. First, we initialize the radiance at the 

emitter: 

𝐿(𝜔𝑁−1) = 𝐿𝑁,𝜃(−𝜔𝑁−1). 

Where the 𝜃 subscript indicates that a function depends on the controls. The radiances along the path 

are then computed using the BRDF 𝜌𝑘,𝜃 and the PDF 𝑝𝑘,𝜃 of the surfaces:  

𝐿(𝜔𝑘−1) = 𝜌𝑘,𝜃(𝑛𝑘, 𝜔𝑘 , −𝜔𝑘−1)(𝑛𝑘 ∙ 𝜔𝑘)𝐿(𝜔𝑘)/𝑝𝑘,𝜃(𝜔𝑘)   for   𝑘 = 𝑁 − 1, ⋯ ,1. 

This gives us the incoming radiance 𝐿(𝜔0) at the receiver. From this radiance we can compute the cost 

function 𝐽(𝐿(𝜔0), 𝜃) and its adjoint 

𝑃(𝜔0) =
𝜕𝐽

𝜕𝐿
(𝐿(𝜔0), 𝜃). 

Then we proceed with a backward pass to compute the adjoints starting with 𝑃(𝜔0): 

𝑃(𝜔𝑘) = 𝜌𝑘,𝜃
∗ (𝑛𝑘, −𝜔𝑘−1, 𝜔𝑘)(−𝑛𝑘 ∙ 𝜔𝑘−1)𝑃(𝜔𝑘−1)/𝑝𝑘,𝜃(𝜔𝑘−1)   for   𝑘 = 1, ⋯ , 𝑁 − 1. 



The gradient of the cost function 
𝑑𝐽

𝑑𝜃
 is computed alongside with the adjoint as follows. We initially set 

this gradient to zero 

𝑑𝐽

𝑑𝜃
= 0 

and then incrementally updated it at each step of the backward pass: 

𝑑𝐽

𝑑𝜃
+= (𝑃(𝜔𝑘−1) ∙ 𝐿(𝜔𝑘))

𝜕𝜌𝑘,𝜃

𝜕𝜃
. 

Although this seems like an expensive step when there are many controls. We notice that in general 

only the subset of controls that the BRDF 𝜌𝑘,𝜃 depends on must be updated. In practice this subset is 

much smaller than the total number of controls: the entire control vector is rarely updated. We finish 

the backward trace with an update of the gradient at the emitter: 

𝑑𝐽

𝑑𝜃
+= (𝑃(𝜔𝑁−1) ∙

𝜕𝐿𝑁,𝜃

𝜕𝜃
). 

The pair (𝐽,
𝑑𝐽

𝑑𝜃
) can then be fed to an optimizer to return a new set of controls 𝜃 and the whole process 

is iterated.  

5.2 A Simple Example5 

As a simple example we consider the diffuse Lambertian BRDF: 

𝜌𝜃(𝑛, 𝜔0, 𝜔1) =
𝜃1

𝜋
, 

a simple emitter: 

𝐿𝜃(𝜔) = 𝜃2𝐸𝑁 

and a PDF that generates cosine weighted random samples: 

𝑝(𝜔) =
cos 𝜗

𝜋
   with   𝜔 = (𝜗, 𝜑). 

 The control is therefore a 2-vector: 𝜃 = (𝜃1, 𝜃2). We assume a very simple cost function: 

𝐽(𝐿) =
1

2
(𝐿 − �̂�)

2
, 

where �̂� is the desired output for the output radiance. The adjoint at the receiver is then given by: 

 
5 See also Appendix C for details on the Cook-Torrance BRDF. 



𝜕𝐽

𝜕𝐿
= 𝐿 − �̂�. 

The derivatives of the BRDF divided by the PDF and of the emission function are: 

𝜕(𝜌𝜃/𝑝)

𝜕𝜃
= (

1
0

)    and  
𝜕𝐿𝜃

𝜕𝜃
= (

0
1

) 𝐸𝑁 .  

This results in the following pseudo-code. Notice that we have 
(𝑛𝑘∙𝜔𝑘)

𝑝(𝜔𝑘)
= 𝜋 and 

−(𝑛𝑘∙𝜔𝑘−1)

𝑝(𝜔𝑘−1)
= 𝜋 because 

our random directions are assumed to be cosine weighted. This leads to the following simple path 

tracing algorithm.  

Forward pass: 

𝐿𝑁−1 = 𝜃2𝐸𝑁 

   𝐟𝐨𝐫   𝑘 = 𝑁 − 1, ⋯ ,1   𝐝𝐨   {𝐿𝑘−1 = 𝜃1𝐿𝑘  

Backward pass: 

𝑑𝐽

𝑑𝜃
= (

0
0

) 

𝑃0 = 𝐿0 − �̂� 

𝐟𝐨𝐫   𝑘 = 1, ⋯ , 𝑁 − 1   𝐝𝐨   {

𝑃𝑘 = 𝜃1𝑃𝑘−1

𝑑𝐽

𝑑𝜃1
+= (𝑃𝑘−1 ∙ 𝐿𝑘)

 

𝑑𝐽

𝑑𝜃2
+= (𝑃𝑁−1 ∙ 𝐸𝑁) 

It doesn’t get simpler than this! 

6. Results 

To validate our model, we have implemented a simple “Vanilla” text-book style path tracer. An outline 

of the implementation in pseudo code is given in Appendix D. We decided to implement our own path 

tracer rather than modifying an existing one so that we could focus on the core algorithm not on 

compatibility and build issues. It also offers more flexibility in debugging and visualizing our results. Our 

path tracer only handles ray/sphere and ray/quad intersections. Consequently, our scenes are restricted 

to quads and spheres. Also, we consider only three types of materials.  

M1: A pure emitter defined by its emission strength (𝜃1). 

M2: A specular Phong-Blinn BRDF / PDF modelled by an ambient term (𝜃2), a diffuse term (𝜃3), a 

specular term (𝜃4) and finally an exponent (𝜃5). 



M3: A diffuse BRDF / PDF defined by an ambient term (𝜃6) and a diffuse term (𝜃7). 

The associated controls are given in parenthesis, there are seven of them which we represent by a 

vector 𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7). Our goal is to compute the gradient of the cost function with 

respect to these controls. 

To validate our model, we consider a simple “Cornell Box”-type scene. The scene is comprised of a box 

with six quad walls having material M3, one quad light source at the top with material M1 and one 

sphere in the center with material M2. The receiver is a pinhole camera defined by a screen located 

inside the box. Figure 5 depicts the scene in our visualizer. 

 

Figure 5. Two snapshots of our simple Path tracer. Left visualization of a single path and right a view of a rendered image and 

some selected paths. 

Our visualizer can depict any quantity we like for debugging purposes. On the left of Figure 5 we show a 

single path, while on the right we show a subset of paths and the resulting rendered image. The ability 

to trace a single path was very useful in comparing our model with estimations obtained from a finite 

difference approximation of the gradients with respect to the controls. The approximation is obtained 

by choosing a small number 𝜀 and computing  

𝑑𝐽

𝑑𝜃𝑘
≅

𝐽(𝜃1, ⋯ , 𝜃𝑘 + 𝜀, ⋯ , 𝜃𝐾) − 𝐽(𝜃1, ⋯ , 𝜃𝑘 − 𝜀, ⋯ , 𝜃𝐾)

2𝜀
 

for each control. Therefore, we must run the path tracer a number 2𝐾 of times where 𝐾 = 7 in our 

example. The right choice for the value of the perturbation 𝜀 is tricky. When 𝜀 is too big the estimate is 

inaccurate and when it is too small, we loose numerical precision because we are subtracting two 



nearby numbers. This is another strong argument for computing gradients using adjoints that do not 

depend on an arbitrary small parameter. In fact our adjoints are accurate up to machine precision. We 

found a sweet spot by varying the perturbation: 𝜀 = 0.1, 0.0001, … In Figure 6 we show these estimates 

for different 𝜀 along with the results from our method at the top. We observe good agreement. Next, 

we show renderings of the final image (top left) and the gradient for each of the seven controls. Figure 7 

computes paths without importance sampling while in Figure 8 the paths are computed with a Phong-

Blinn importance sampling as described in Appendix B. 

 

Figure 7. Renderings of the image (top/left) and the gradients with respect to the controls with cosine-weighted uniform 

sampling. 

Figure 6. Comparison of the gradients obtained with our method (top/left) and finite difference estimates for different values 

of 𝜀. 

J = 3.3162e-06 
dJ/dcontrol = 
0 0 3.56703 22.1649 0.134605 10 13.3333 
---------- Numerical gradients --------- 
EPS = 0.1 
numerical dJ/dcost: 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.411622 - 0.691398 ) / 2*EPS = 3.601122 
( 6.075682 - 0.053732 ) / 2*EPS = 30.109749 
( 1.013496 - 0.986575 ) / 2*EPS = 0.134604 
( 2.250000 - 0.250000 ) / 2*EPS = 10.000000 
( 3.160494 - 0.197531 ) / 2*EPS = 14.814816 

  

 

 

 

 

EPS = 0.0001 
numerical dJ/dcost: 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000357 - 0.999644 ) / 2*EPS = 3.565848 
( 1.002218 - 0.997785 ) / 2*EPS = 22.164581 
( 1.000014 - 0.999987 ) / 2*EPS = 0.134408 
( 1.001000 - 0.999000 ) / 2*EPS = 10.000169 
( 1.001334 - 0.998668 ) / 2*EPS = 13.332068 
 

 

 

 

 

EPS = 1e-07 
numerical dJ/dcost: 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000001 - 1.000000 ) / 2*EPS = 4.768371 
( 1.000002 - 0.999998 ) / 2*EPS = 19.669531 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000001 - 0.999999 ) / 2*EPS = 8.642673 
( 1.000001 - 0.999999 ) / 2*EPS = 13.411044 
  

 

 

 

 

EPS = 1e-10 
numerical dJ/dcost: 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
( 1.000000 - 1.000000 ) / 2*EPS = 0.000000 
  



 

Figure 8. Renderings of the image (top/left) and the gradients with respect to the controls with Phong-Blinn importance 

sampling. 

7. Conclusions and Future Work 

In this work we have presented a novel general method to compute gradients of radiance in the context 

of transport theory. To achieve this, we have derived an equation for the adjoint/Jacobian of the cost 

function from the general theory of adjoints in optimization theory. We have shown that this can easily 

be implemented in a simple home brewed path tracer. The results show good agreement with a finite 

difference computation of the cost function. 

In the future we want to extend the theory to more general settings including volumetric scatterers and 

perhaps include diffraction effects. In these cases, we have to deal with an integro-integral equation and 

a Kirchhoff integral, respectively. Also, we want to implement this method in various existing GPU-based 

path tracers like Fermat. 
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Appendices 

A. Adjoint Equation 

In this appendix we derive the adjoint equation (Eq. 8) and an expression for the derivative of the cost 

function with respect to the controls (Eq. 9). Recall that the augmented Lagrangian is defined as 

ℒ(𝑢, 𝑝, 𝜃) = 〈𝐽(𝑢, 𝜃)〉 + 〈𝑝, 𝐸(𝑢, 𝜃)〉. 

Stationarity with respect to the state implies 

0 =
𝜕ℒ

𝜕𝑢
𝛿𝑢 = 〈

𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈𝑝,

𝜕𝐸

𝜕𝑢
𝛿𝑢〉    →    〈

𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 = − 〈𝑝,

𝜕𝐸

𝜕𝑢
𝛿𝑢〉.     (𝐴. 1) 

From the same equation and using the definition of the adjoint we have that 

0 = 〈
𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈𝑝,

𝜕𝐸

𝜕𝑢
𝛿𝑢〉 = 〈

𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈(

𝜕𝐸

𝜕𝑢
)

∗

𝑝, 𝛿𝑢〉 = 〈
𝜕𝐽

𝜕𝑢
+ (

𝜕𝐸

𝜕𝑢
)

∗

𝑝, 𝛿𝑢〉. 

Since this equation must hold for all functions 𝛿𝑢 we get Eq. 8:  

(
𝜕𝐸

𝜕𝑢
)

∗

𝑝 = −
𝜕𝐽

𝜕𝑢
. 

Now consider the second condition: 

0 =
𝜕ℒ

𝜕𝑝
= 𝐸(𝑢, 𝜃). 

This is simply the equation that our state must satisfy the constraint and implies that its differential 

vanishes 

0 = 𝛿𝐸 =
𝜕𝐸

𝜕𝑢
𝛿𝑢 +

𝜕𝐸

𝜕𝜃
   →    

𝜕𝐸

𝜕𝑢
𝛿𝑢 = −

𝜕𝐸

𝜕𝜃
.     (𝐴. 2) 

With these results we can compute the gradient of the cost function 

𝛿𝒥 = 〈
𝜕𝐽

𝜕𝑢
, 𝛿𝑢〉 + 〈

𝜕𝐽

𝜕𝜃
〉 =⏟

𝐴.1

− 〈𝑝,
𝜕𝐸

𝜕𝑢
𝛿𝑢〉 + 〈

𝜕𝐽

𝜕𝜃
〉 =⏟

𝐴.2

〈𝑝,
𝜕𝐸

𝜕𝜃
〉 + 〈

𝜕𝐽

𝜕𝜃
〉. 

http://graphics.stanford.edu/~ericv/
http://graphics.stanford.edu/papers/veach_thesis/


This is Eq. 9. 

B. Sampling from a PDF 

For simplicity we assume that the PDF is isotropic and thus only depends on the elevation angle:  

𝑝(𝜔) = 2𝜋 𝑝(𝜗). 

 We then generate a random sample 𝜔 from this distribution using the Cumulative Probability 

Distribution (CDF): 

𝑃(𝜗) = Prob(𝑡 ≤ 𝜗) = 2𝜋 ∫ 𝑝(𝑡) sin 𝑡 𝑑𝑡.
𝜗

0

 

This is a mapping from elevation angles in [0,
𝜋

2
] to the unit interval [0,1]. Using the inverse of the CDF 

we can directly generate a  𝑝-distributed random angle 𝜗 from a uniformly distributed 𝑢~𝑈(0,1): 

𝜗 = 𝑃−1(𝑢). 

As an example, consider the cosine-weighted Phong-Blinn PDF depending on an exponent parameter 

𝛼 ≥ 0 (for 𝛼 = 0 one obtains a cosine weighted Lambertian PDF). This PDF handles all cases considered 

in this paper:  

𝑝𝛼(𝜗) =
𝛼 + 2

2𝜋
(cos 𝜗)𝛼+1. 

This gives the following CDF: 

𝑃𝛼(𝜗) = (𝛼 + 2) ∫ (cos 𝑡)𝛼+1 sin 𝑡 𝑑𝑡
𝜗

0

= 1 − (cos 𝜗)𝛼+2. 

With an inverse equal to: 

𝜗 = Φ𝛼(𝑢) = 𝑃𝛼
−1(𝑢) = acos ((1 − 𝑢)

1
𝛼+2). 

These results give us a recipe to generate random vectors for our path tracer from the PDFs given 

above. The general algorithm works as follows. To generate a random vector 𝜔 in a world coordinate 

frame (𝑋, 𝑌, 𝑍) with the 𝑍-vector being the normal direction: 

Generate: 𝑢1, 𝑢2~𝑈(0,1). 

Set: 𝜗 = Φ𝛼(𝑢1) and 𝜑 = 2𝜋𝑢2. 

Random vector: �̅� = (�̅�𝑥 , �̅�𝑦, �̅�𝑧) = (cos 𝜑 cos 𝜗 , sin 𝜑 cos 𝜗 , sin 𝜗). 

Convert to world space: 𝜔 = �̅�𝑥𝑋 + �̅�𝑦𝑌 + �̅�𝑧𝑍. 



C. The Cook-Torrance and Phong-Blinn BRDF 

In this appendix we give all the details for the Phong-Blinn model. We will use a variant of the Cook-

Torrance BRDF to simplify some of the resulting expressions. The goal here is not to faithfully reproduce 

the original Cook-Torrance BRDF but to show the details on how to implement such a model in our 

framework. The Cook-Torrance BRDF is usually defined as follows: 

𝜌(𝑛, 𝜔𝑖, 𝜔𝑜) = 𝐹(𝑛, 𝜔𝑖, 𝜔𝑜)𝐺(𝑛, 𝜔𝑖, 𝜔𝑜)𝐷(𝜔𝑚), 

Where 𝐹 account for Fresnel effects which we will set equal to one. 𝐺 is a geometric factor that 

accounts for shadowing and the spread of the solid angles. We use the following expression: 

𝐺(𝑛, 𝜔𝑖, 𝜔𝑜) =
(𝜔𝑚 ∙ 𝑛)

4(𝜔𝑚 ∙ 𝜔𝑜)(𝜔𝑖 ∙ 𝑛)
=

cos 𝜗𝑚

4 cos 𝜗𝑚𝑜 cos 𝜗𝑖
. 

Where 𝜔𝑚 is the vector halfway between the incoming and the outgoing directions: 

𝜔𝑚 =
𝜔𝑖 + 𝜔𝑜

‖𝜔𝑖 + 𝜔𝑜‖
. 

This vector is the normal that perfectly reflects the incoming light into the outgoing direction and is 

distributed according to a Normal Density Function (NDF) 𝐷(𝜔𝑚). In this appendix we will consider the 

Phong-Blinn NDF (𝜔𝑚 = (𝜗𝑚, 𝜑𝑚)):6 

𝐷𝑃𝐵,𝛼(𝜗𝑚, 𝜑𝑚) =
𝛼 + 2

2𝜋
(cos 𝜗𝑚)𝛼 sin 𝜗𝑚. 

Notice that this distribution is not normalized since the right normalizing term should be (𝛼 + 1)/2𝜋. 

Since we are not sampling from this distribution but the one given below this does not matter. This 

choice does however simplify the expressions below. The incoming direction is a function of the normal 

and the outgoing direction through the reflection law: 

𝜔𝑖 = 𝑅𝑜(𝜔𝑚) = 2(𝜔𝑚 ∙ 𝜔𝑜)𝜔𝑚 − 𝜔𝑜. 

And the corresponding differentials satisfy: 

𝑑𝜔𝑖 = 𝑑𝑅𝑜(𝜔𝑚) = 4(𝜔𝑚 ∙ 𝜔𝑜)𝑑𝜔𝑚 = 4 cos 𝜗𝑚𝑜 sin 𝜗𝑚 𝑑𝜗𝑚𝑑𝜑𝑚. 

The PDF for the cosine weighted Phong-Blinn model is given by: 

𝑝𝛼(𝜗𝑚, 𝜑𝑚) =
𝛼 + 2

2𝜋
(cos 𝜗𝑚)𝛼+1 sin 𝜗𝑚. 

 
6We point out that other choices for the NDF such as Beckmann or GGX are currently more popular. The 

same methodology described here applies to those models as well.  



This distribution is normalized, and we can therefore use it to sample random normals using the 

procedure described in Appendix B. 

In importance path tracing we evaluate the outgoing radiance as follows: 

𝑑𝐿(𝜔𝑜) =
𝜌𝛼(𝑛, 𝜔𝑖, 𝜔𝑜)

𝑝𝛼(𝜔𝑚)
(𝜔𝑖 ∙ 𝑛)𝐿(𝜔𝑖)𝑑𝜔𝑖. 

We can rewrite this in terms of the angles (𝜗𝑚, 𝜑𝑚) as follows where we also use all the expressions 

derived above: 

𝑑𝐿(𝜗𝑜, 𝜑𝑜) =
𝜌𝛼(𝜗𝑖, 𝜃𝑜)

𝑝𝛼(𝜗𝑚, 𝜑𝑚)
cos 𝜗𝑖 4 cos 𝜗𝑚𝑜 sin 𝜗𝑚 𝐿(𝑅𝑜(𝜔𝑚))𝑑𝜗𝑚𝑑𝜑𝑚

=

(

𝛼 + 2
2𝜋

(cos 𝜗𝑚)𝛼 sin 𝜗𝑚 cos 𝜗𝑚

4 cos 𝜗𝑚𝑜 cos 𝜗𝑖
) × cos 𝜗𝑖 4 cos 𝜗𝑚𝑜 sin 𝜗𝑚 𝐿(𝑅𝑜(𝜔𝑚))𝑑𝜗𝑚𝑑𝜑𝑚

(
𝛼 + 2

2𝜋
(cos 𝜗𝑚)𝛼+1 sin 𝜗𝑚)

=  𝐿(𝑅𝑜(𝜔𝑚)) sin 𝜗𝑚 𝑑𝜗𝑚𝑑𝜑𝑚. 

After grand eliminations, we get the simple update rule: 

𝑑𝐿(𝜔𝑜) = 𝐿(𝑅𝑜(𝜔𝑚)) sin 𝜃𝑚(𝛼) 𝑑𝜗𝑚𝑑𝜑𝑚. 

To update the gradient of the cost function with respect to the exponent parameter 𝛼 we need to 

differentiate this expression. The sine term depends on 𝛼 through the sampling procedure (see 

Appendix B): 

𝑠(𝛼) = sin 𝜃𝑚 (𝛼) = √1 − (1 − 𝑢)
2

𝛼+2. 

And its derivative is: 

𝑑𝑠

𝑑𝛼
(𝛼) =

(1 − 𝑢)
2

𝛼+2 log(1 − 𝑢)

(𝛼 + 2)2√1 − (1 − 𝑢)
2

𝛼+2

=
cos2 𝜗𝑚 log(cos𝛼+2 𝜗𝑚)

(𝛼 + 2)2 sin 𝜗𝑚
=

cos2 𝜗𝑚 log(cos 𝜗𝑚)

(𝛼 + 2) sin 𝜗𝑚
. 

D. A Simple Path Tracer 

In this Appendix we describe our simple path tracer in pseudo code. Instead of using an existing path 

tracer and modifying it, we decided to write our own. Why? It is general, simple and self contained with 

no external dependencies and no complicated data structures and optimizations. At the highest level it 

works like this.  



 func do_path_tracing(do_gradient) 
     if do_gradient then 
         cost = 0 

        clear_gradients() 
    end if 

     for each image pixel do 
         pixel_radiance = 0 
         for N samples do 
             create initial ray R 
             make_path(R) 
             radiance = forward_pass() / N 
             pixel_radiance += radiance 
             if do_gradient then 
                 cost += cost(radiance) 
                 adjoint = dcost_drad(radiance) 
                 backward_path(adjoint) 
             end if 
         end if 

    end for 
end 

 

When do_gradient==false we just perform a standard path trace. This is how it works. First, we create 

a path by intersecting the ray with the scene and spawning reflection vectors by sampling the 

corresponding PDFs. Then we traverse the path from the emitters to the receivers in a forward pass 

accumulating the radiance to generate a final radiance. To compute the gradients, we first compute the 

adjoint which is the Jacobian of the cost with respect to the radiance. Then, we perform a backward 

pass updating the adjoint and updating the gradient of each active control. The first step builds a path 

recursively. 

func make_path(R) 
     hit = int_scene(R) 
     if hit!=0 and R->depth < MAX_DEPTH then 
         u = unif(0,1) 
         if u >= hit->absorb then 
             dir = hit->sample(hit->normal,R->dir) 
             R_new = make_ray(R->depth+1, hit->point, dir) 
             make_path(R_new) 
         end if 
         path[R->depth]->{hit, dir_i, dir_o} = {hit, R->dir, dir} 
     end if 
 end 

 
Once the path is created, we perform a forward pass. 
   
 func forward_pass() 
     N = path length 
     hit = path[N-1]->hit  
     radiance = hit->emission / hit->absorb 
     for k=N-2 to k>=0 do 
         {hit, dir_i, dir_o} = path[k]->{hit, dir_i, dir_o} 
         path[k]->radiance = radiance 
   radiance = hit->BSDF_D_PDF(hit->normal, dir_o, -dir_i) * radiance 
     end for 
     return radiance 
 end 



 
After computing the cost and the adjoint we then perform a backward pass: 
  

func backward_pass(adjoint) 
    N = path length 
    for k=0 to N-2 do 
        {hit, dir_i, dir_o, radiance} = path[k]->{hit, dir_i, dir_o, radiance} 
        radiance /= 1 - hit->absorb 
        hit->update_BSDF_D_PDF_gradients(hit->normal, -dir_i, dir_o, radiance, 

adjoint) 
        adjoint = hit->BSDF_D_PDF(hit->normal, -dir_i, dir_o) * adjoint 
    end for 
    hit = path[N-1]->hit 
    radiance = hit->emission / hit->absorb 
    hit->emission_gradient += radiance * adjoint 
    adjoint = 0 
end  

 

The routines in italicized bold face must be provided for a particular BSDF/PDF. Here are the 

implementations for Lambert 

func sample(normal, dir) 

    u1, u2 = unif(0,1) 

    c = sqrt(1-u1) 

    s = sqrt(u1) 

    (x,y,z) = (cos(2*PI*u2)*c, sin(2*PI*u2)*c, s) 

    make_frame(normal, X, Y, Z) 

    return x*X + y*Y + z*Z 

end  

     

func BSDF_D_PDF(normal, dir_i, dir_o) 

    return diff_col 

end 

 

func update_BSDF_D_PDF_gradients(normal, dir_i, dir_o, radiance, adjoint) 

    diff_gradient += radiance*adjoint 

end 

 

And for Phong-Blinn 

func sample(normal, dir) 

    u1, u2 = unif(0,1) 

    t = pow(u1,2/(exponent+2)) 

    c = sqrt(1-t) 

    s = sqrt(t) 

    (x, y, z) = (cos(2*PI*u2)*c, sin(2*PI*u2)*c, s) 

    make_frame(normal, X, Y, Z) 

    N = x*X + y*Y + z*Z 

    if dot(N,dir) < 0 then N = 2*dot(N,normal)*normal – N end if 

    return 2*dot(N,dir)*N - dir 

end  

 



func BSDF_D_PDF(normal, dir_i, dir_o) 

    dir_m = normalize(dir_i + dir_m) 

    cos_m = dir_m*normal 

    cos2_m = cos_m*cos_m 

    sin_m = sqrt(1-dir_m*dir_m) 

    return spec_col * sin_m 

end 

 

func update_BSDF_D_PDF_gradients(normal, dir_i, dir_o, radiance, adjoint) 

    dir_m = normalize(dir_i + dir_m) 

    cos_m = dir_m*normal 

    cos2_m = cos_m*cos_m 

    sin_m = sqrt(1-cos2_m) 

    dsin_m = cos2_m * log(cos_m) / sin_m / (alpha+2) 

 

    spec_gradient += sin_m * (radiance*adjoint) 

    alpha_gradient += spec_col * dsin_m * (radiance*adjoint) 

end 

The function make_frame() generates an orthonormal frame from the normal: 

func make_frame(N, X, Y, Z) 

    Z = N 

    X = Z + (0.1, 0.2, 0.3) 

    Y = normalize(cross(Z,X)) 

    X = normalize(cross(Y,Z)) 

end 

 

The orientation of the frame along the normal does not matter because we only consider isotropic 

BRDFs in this paper. 

 

 


